Search Results

Bounded Dynamic Source Routing in Mobile Ad Hoc Networks
A mobile ad hoc network (MANET) is a collection of mobile platforms or nodes that come together to form a network capable of communicating with each other, without the help of a central controller. To avail the maximum potential of a MANET, it is of great importance to devise a routing scheme, which will optimize upon the performance of a MANET, given the high rate of random mobility of the nodes. In a MANET individual nodes perform the routing functions like route discovery, route maintenance and delivery of packets from one node to the other. Existing routing protocols flood the network with broadcasts of route discovery messages, while attempting to establish a route. This characteristic is instrumental in deteriorating the performance of a MANET, as resource overhead triggered by broadcasts is directly proportional to the size of the network. Bounded-dynamic source routing (B-DSR), is proposed to curb this multitude of superfluous broadcasts, thus enabling to reserve valuable resources like bandwidth and battery power. B-DSR establishes a bounded region in the network, only within which, transmissions of route discovery messages are processed and validated for establishing a route. All route discovery messages reaching outside of this bounded region are dropped, thus preventing the network from being flooded. In addition B-DSR also guarantees loop-free routing and is robust for a rapid recovery when routes in the network change.
Building an Intelligent Filtering System Using Idea Indexing
The widely used vector model maintains its popularity because of its simplicity, fast speed, and the appeal of using spatial proximity for semantic proximity. However, this model faces a disadvantage that is associated with the vagueness from keywords overlapping. Efforts have been made to improve the vector model. The research on improving document representation has been focused on four areas, namely, statistical co-occurrence of related items, forming term phrases, grouping of related words, and representing the content of documents. In this thesis, we propose the idea-indexing model to improve document representation for the filtering task in IR. The idea-indexing model matches document terms with the ideas they express and indexes the document with these ideas. This indexing scheme represents the document with its semantics instead of sets of independent terms. We show in this thesis that indexing with ideas leads to better performance.
A C Navigational System
The C Navigational System (CNS) is a proposed programming environment for the C programming language. The introduction covers the major influences of programming environments and the components of a programming environment. The system is designed to support the design, coding and maintenance phases of software development. CNS provides multiple views to both the source and documentation for a programming project. User-defined and system-defined links allow the source and documentation to be hierarchically searched. CNS also creates a history list and function interface for each function in a module. The final chapter compares CNS and several other programming environments (Microscope, Rn, Cedar, PECAN, and Marvel).
A Comparison of Agent-Oriented Software Engineering Frameworks and Methodologies
Agent-oriented software engineering (AOSE) covers issues on developing systems with software agents. There are many techniques, mostly agent-oriented and object-oriented, ready to be chosen as building blocks to create agent-based systems. There have been several AOSE methodologies proposed intending to show engineers guidelines on how these elements are constituted in having agents achieve the overall system goals. Although these solutions are promising, most of them are designed in ad-hoc manner without truly obeying software developing life-cycle fully, as well as lacking of examinations on agent-oriented features. To address these issues, we investigated state-of-the-art techniques and AOSE methodologies. By examining them in different respects, we commented on the strength and weakness of them. Toward a formal study, a comparison framework has been set up regarding four aspects, including concepts and properties, notations and modeling techniques, process, and pragmatics. Under these criteria, we conducted the comparison in both overview and detailed level. The comparison helped us with empirical and analytical study, to inspect the issues on how an ideal agent-based system will be formed.
Computational Complexity of Hopfield Networks
There are three main results in this dissertation. They are PLS-completeness of discrete Hopfield network convergence with eight different restrictions, (degree 3, bipartite and degree 3, 8-neighbor mesh, dual of the knight's graph, hypercube, butterfly, cube-connected cycles and shuffle-exchange), exponential convergence behavior of discrete Hopfield network, and simulation of Turing machines by discrete Hopfield Network.
A Computer Algorithm for Synthetic Seismograms
Synthetic seismograms are a computer-generated aid in the search for hydrocarbons. Heretofore the solution has been done by z-transforms. This thesis presents a solution based on the method of finite differences. The resulting algorithm is fast and compact. The method is applied to three variations of the problem, all three are reduced to the same approximating equation, which is shown to be optimal, in that grid refinement does not change it. Two types of algorithms are derived from the equation. The number of obvious multiplications, additions and subtractions of each is analyzed. Critical section of each requires one multiplication, two additions and two subtractions. Four sample synthetic seismograms are shown. Implementation of the new algorithm runs twice as fast as previous computer program.
Computer Graphics Primitives and the Scan-Line Algorithm
This paper presents the scan-line algorithm which has been implemented on the Lisp Machine. The scan-line algorithm resides beneath a library of primitive software routines which draw more fundamental objects: lines, triangles and rectangles. This routine, implemented in microcode, applies the A(BC)*D approach to word boundary alignments in order to create an extremely fast, efficient, and general purpose drawing primitive. The scan-line algorithm improves on previous methodologies by limiting the number of CPU intensive instructions and by minimizing the number of words referenced. This paper will describe how to draw scan-lines and the constraints imposed upon the scan-line algorithm by the Lisp Machine's hardware and software.
Computer Realization of Human Music Cognition
This study models the human process of music cognition on the digital computer. The definition of music cognition is derived from the work in music cognition done by the researchers Carol Krumhansl and Edward Kessler, and by Mari Jones, as well as from the music theories of Heinrich Schenker. The computer implementation functions in three stages. First, it translates a musical "performance" in the form of MIDI (Musical Instrument Digital Interface) messages into LISP structures. Second, the various parameters of the performance are examined separately a la Jones's joint accent structure, quantified according to psychological findings, and adjusted to a common scale. The findings of Krumhansl and Kessler are used to evaluate the consonance of each note with respect to the key of the piece and with respect to the immediately sounding harmony. This process yields a multidimensional set of points, each of which is a cognitive evaluation of a single musical event within the context of the piece of music within which it occurred. This set of points forms a metric space in multi-dimensional Euclidean space. The third phase of the analysis maps the set of points into a topology-preserving data structure for a Schenkerian-like middleground structural analysis. This process yields a hierarchical stratification of all the musical events (notes) in a piece of music. It has been applied to several pieces of music with surprising results. In each case, the analysis obtained very closely resembles a structural analysis which would be supplied by a human theorist. The results obtained invite us to take another look at the representation of knowledge and perception from another perspective, that of a set of points in a topological space, and to ask if such a representation might not be useful in other domains. It also leads us to ask if such a …
Convexity-Preserving Scattered Data Interpolation
Surface fitting methods play an important role in many scientific fields as well as in computer aided geometric design. The problem treated here is that of constructing a smooth surface that interpolates data values associated with scattered nodes in the plane. The data is said to be convex if there exists a convex interpolant. The problem of convexity-preserving interpolation is to determine if the data is convex, and construct a convex interpolant if it exists.
DADS - A Distributed Agent Delivery System
Mobile agents require an appropriate platform that can facilitate their migration and execution. In particular, the design and implementation of such a system must balance several factors that will ensure that its constituent agents are executed without problems. Besides the basic requirements of migration and execution, an agent system must also provide mechanisms to ensure the security and survivability of an agent when it migrates between hosts. In addition, the system should be simple enough to facilitate its widespread use across large scale networks (i.e Internet). To address these issues, this thesis discusses the design and implementation of the Distributed Agent Delivery System (DADS). The DADS provides a de-coupled design that separates agent acceptance from agent execution. Using functional modules, the DADS provides services ranging from language execution and security to fault-tolerance and compression. Modules allow the administrator(s) of hosts to declare, at run-time, the services that they want to provide. Since each administrative domain is different, the DADS provides a platform that can be adapted to exchange heterogeneous blends of agents across large scale networks.
Defensive Programming
This research explores the concepts of defensive programming as currently defined in the literature. Then these concepts are extended and more explicitly defined. The relationship between defensive programming, as presented in this research, and current programming practices is discussed and several benefits are observed. Defensive programming appears to benefit the entire software life cycle. Four identifiable phases of the software development process are defined, and the relationship between these four phases and defensive programming is shown. In this research, defensive programming is defined as writing programs in such a way that during execution the program itself produces communication allowing the programmer and the user to observe its dynamic states accurately and critically. To accomplish this end, the use of defensive programming snap shots is presented as a software development tool.
The Design and Implementation of a Prolog Parser Using Javacc
Operatorless Prolog text is LL(1) in nature and any standard LL parser generator tool can be used to parse it. However, the Prolog text that conforms to the ISO Prolog standard allows the definition of dynamic operators. Since Prolog operators can be defined at run-time, operator symbols are not present in the grammar rules of the language. Unless the parser generator allows for some flexibility in the specification of the grammar rules, it is very difficult to generate a parser for such text. In this thesis we discuss the existing parsing methods and their modified versions to parse languages with dynamic operator capabilities. Implementation details of a parser using Javacc as a parser generator tool to parse standard Prolog text is provided. The output of the parser is an “Abstract Syntax Tree” that reflects the correct precedence and associativity rules among the various operators (static and dynamic) of the language. Empirical results are provided that show that a Prolog parser that is generated by the parser generator like Javacc is comparable in efficiency to a hand-coded parser.
The Design and Implementation of an Intelligent Agent-Based File System
As bandwidth constraints on LAN/WAN environments decrease, the demand for distributed services will continue to increase. In particular, the proliferation of user-level applications requiring high-capacity distributed file storage systems will demand that such services be universally available. At the same time, the advent of high-speed networks have made the deployment of application and communication solutions based upon an Intelligent Mobile Agent (IMA) framework practical. Agents have proven to present an ideal development paradigm for the creation of autonomous large-scale distributed systems, and an agent-based communication scheme would facilitate the creation of independently administered distributed file services. This thesis thus outlines an architecture for such a distributed file system based upon an IMA communication framework.
A Design Approach for Digital Computer Peripheral Controllers, Case Study Design and Construction
The purpose of this project was to describe a novel design approach for a digital computer peripheral controller, then design and construct a case study controller. This document consists of three chapters and an appendix. Chapter II presents the design approach chosen; a variation to a design presented by Charles R. Richards in an article published in Electronics magazine. Richards' approach consists of a finite state machine circuitry controlling all the functions of a controller. The variation to Richards' approach consists of considering the various logically independent processes which a controller carries out and assigning control of each process to a separate finite state machine. The appendix contains the documentation of the design and construction of the controller.
DirectShow Approach to Low-Cost Multimedia Security Surveillance System
In response to the recent intensive needs for civilian security surveillance, both full and compact versions of a Multimedia Security Surveillance (MSS) system have been built up. The new Microsoft DirectShow technology was applied in implementing the multimedia stream-processing module. Through Microsoft Windows Driver Model interface, the chosen IEEE1394 enabled Fire-i cameras as external sensors are integrated with PC based continuous storage unit. The MSS application also allows multimedia broadcasting and remote controls. Cost analysis is included.
DRVBLD: a UNIX Device Driver Builder
New peripheral devices are being developed at an ever increasing rate. Before such accessories can be used in the UNIX environment (UNIX is a trademark of Bell Laboratories), they must be able to communicate with the operating system. This involves writing a device driver for each device. In order to do this, very detailed knowledge is required of both the device to be integrated and the version of UNIX to which it will be attached. The process is long, detailed and prone to subtle problems and errors. This paper presents a menu-driven utility designed to simplify and accelerate the design and implementation of UNIX device drivers by freeing developers from many of the implementation specific low-level details.
Dynamic Grid-Based Data Distribution Management in Large Scale Distributed Simulations
Distributed simulation is an enabling concept to support the networked interaction of models and real world elements that are geographically distributed. This technology has brought a new set of challenging problems to solve, such as Data Distribution Management (DDM). The aim of DDM is to limit and control the volume of the data exchanged during a distributed simulation, and reduce the processing requirements of the simulation hosts by relaying events and state information only to those applications that require them. In this thesis, we propose a new DDM scheme, which we refer to as dynamic grid-based DDM. A lightweight UNT-RTI has been developed and implemented to investigate the performance of our DDM scheme. Our results clearly indicate that our scheme is scalable and it significantly reduces both the number of multicast groups used, and the message overhead, when compared to previous grid-based allocation schemes using large-scale and real-world scenarios.
Dynamic Resource Management in RSVP- Controlled Unicast Networks
Resources are said to be fragmented in the network when they are available in non-contiguous blocks, and calls are dropped as they may not end sufficient resources. Hence, available resources may remain unutilized. In this thesis, the effect of resource fragmentation (RF) on RSVP-controlled networks was studied and new algorithms were proposed to reduce the effect of RF. In order to minimize the effect of RF, resources in the network are dynamically redistributed on different paths to make them available in contiguous blocks. Extra protocol messages are introduced to facilitate resource redistribution in the network. The Dynamic Resource Redistribution (DRR) algorithm when used in conjunction with RSVP, not only increased the number of calls accommodated into the network but also increased the overall resource utilization of the network. Issues such as how many resources need to be redistributed and of which call(s), and how these choices affect the redistribution process were investigated. Further, various simulation experiments were conducted to study the performance of the DRR algorithm on different network topologies with varying traffic characteristics.
Efficient Linked List Ranking Algorithms and Parentheses Matching as a New Strategy for Parallel Algorithm Design
The goal of a parallel algorithm is to solve a single problem using multiple processors working together and to do so in an efficient manner. In this regard, there is a need to categorize strategies in order to solve broad classes of problems with similar structures and requirements. In this dissertation, two parallel algorithm design strategies are considered: linked list ranking and parentheses matching.
Embedded monitors for detecting and preventing intrusions in cryptographic and application protocols.
There are two main approaches for intrusion detection: signature-based and anomaly-based. Signature-based detection employs pattern matching to match attack signatures with observed data making it ideal for detecting known attacks. However, it cannot detect unknown attacks for which there is no signature available. Anomaly-based detection builds a profile of normal system behavior to detect known and unknown attacks as behavioral deviations. However, it has a drawback of a high false alarm rate. In this thesis, we describe our anomaly-based IDS designed for detecting intrusions in cryptographic and application-level protocols. Our system has several unique characteristics, such as the ability to monitor cryptographic protocols and application-level protocols embedded in encrypted sessions, a very lightweight monitoring process, and the ability to react to protocol misuse by modifying protocol response directly.
Execution Time Analysis through Software Monitors
The analysis of an executing program and the isolation of critical code has been a problem since the first program was written. This thesis examines the process of program analysis through the use of a software monitoring system. Since there is a trend toward structured languages a subset of PL/I was developed t~o exhibit source statement monitoring and costing techniques. By filtering a PL/W program through a preorocessor which determines the cost of source statements and inserts monitoring code, a post-execution analysis of the program can be obtained. This analysis displays an estimated time cost for each source statements the number of times the statement w3s executed, and the product of these values. Additionally, a bar graph is printed in order to quickly locate very active code.
Exon/Intron Discrimination Using the Finite Induction Pattern Matching Technique
DNA sequence analysis involves precise discrimination of two of the sequence's most important components: exons and introns. Exons encode the proteins that are responsible for almost all the functions in a living organism. Introns interrupt the sequence coding for a protein and must be removed from primary RNA transcripts before translation to protein can occur. A pattern recognition technique called Finite Induction (FI) is utilized to study the language of exons and introns. FI is especially suited for analyzing and classifying large amounts of data representing sequences of interest. It requires no biological information and employs no statistical functions. Finite Induction is applied to the exon and intron components of DNA by building a collection of rules based upon what it finds in the sequences it examines. It then attempts to match the known rule patterns with new rules formed as a result of analyzing a new sequence. A high number of matches predict a probable close relationship between the two sequences; a low number of matches signifies a large amount of difference between the two. This research demonstrates FI to be a viable tool for measurement when known patterns are available for the formation of rule sets.
Extensions to Jinni Mobile Agent Architecture
We extend the Jinni mobile agent architecture with a multicast network transport layer, an agent-to-agent delegation mechanism and a reflection based Prolog-to-Java interface. To ensure that our agent infrastructure runs efficiently, independently of router-level multicast support, we describe a blackboard based algorithm for locating a randomly roaming agent. As part of the agent-to-agent delegation mechanism, we describe an alternative to code-fetching mechanism for stronger mobility of mobile agents with less network overhead. In the context of direct and reflection based extension mechanisms for Jinni, we describe the design and the implementation of a reflection based Prolog-to-Java interface. The presence of subtyping and method overloading makes finding the most specific method corresponding to a Prolog call pattern fairly difficult. We describe a run-time algorithm which provides accurate handling of overloaded methods beyond Java's reflection package's limitations.
Extracting Temporally-Anchored Knowledge from Tweets
Twitter has quickly become one of the most popular social media sites. It has 313 million monthly active users, and 500 million tweets are published daily. With the massive number of tweets, Twitter users share information about a location along with the temporal awareness. In this work, I focus on tweets where author of the tweets exclusively mentions a location in the tweet. Natural language processing systems can leverage wide range of information from the tweets to build applications like recommender systems that predict the location of the author. This kind of system can be used to increase the visibility of the targeted audience and can also provide recommendations interesting places to visit, hotels to stay, restaurants to eat, targeted on-line advertising, and co-traveler matching based on the temporal information extracted from a tweet. In this work I determine if the author of the tweet is present in the mentioned location of the tweet. I also determine if the author is present in the location before tweeting, while tweeting, or after tweeting. I introduce 5 temporal tags (before the tweet but > 24 hours; before the tweet but < 24 hours; during the tweet is posted; after the tweet is posted but < 24 hours; and after the tweet is posted but > 24 hours). The major contributions of this paper are: (1) creation of a corpus of 1062 tweets containing 1200 location named entities, containing annotations whether author of a tweet is or is not located in the location he tweets about with respect to 5 temporal tags; (2) detailed corpus analysis including real annotation examples and label distributions per temporal tag; (3) detailed inter-annotator agreements, including Cohen's kappa, Krippendorff's alpha and confusion matrices per temporal tag; (4) label distributions and analysis; and (5) supervised learning experiments, along with …
FORTRAN Optimizations at the Source Code Level
This paper discusses FORTRAN optimizations that the user can perform manually at the source code level to improve object code performance. It makes use of descriptive examples within the text of the paper for explanatory purposes. The paper defines key areas in writing a FORTRAN program and recommends ways to improve efficiency in these areas.
A general purpose semantic parser using FrameNet and WordNet®.
Syntactic parsing is one of the best understood language processing applications. Since language and grammar have been formally defined, it is easy for computers to parse the syntactic structure of natural language text. Does meaning have structure as well? If it has, how can we analyze the structure? Previous systems rely on a one-to-one correspondence between syntactic rules and semantic rules. But such systems can only be applied to limited fragments of English. In this thesis, we propose a general-purpose shallow semantic parser which utilizes a semantic network (WordNet), and a frame dataset (FrameNet). Semantic relations recognized by the parser are based on how human beings represent knowledge of the world. Parsing semantic structure allows semantic units and constituents to be accessed and processed in a more meaningful way than syntactic parsing, moving the automation of understanding natural language text to a higher level.
Generating Machine Code for High-Level Programming Languages
The purpose of this research was to investigate the generation of machine code from high-level programming language. The following steps were undertaken: 1) Choose a high-level programming language as the source language and a computer as the target computer. 2) Examine all stages during the compiling of a high-level programming language and all data sets involved in the compilation. 3) Discover the mechanism for generating machine code and the mechanism to generate more efficient machine code from the language. 3) Construct an algorithm for generating machine code for the target computer. The results suggest that compiler is best implemented in a high-level programming language, and that SCANNER and PARSER should be independent of target representations, if possible.
A Graphical, Database-Querying Interface for Casual, Naive Computer Users
This research is concerned with some aspects of the retrieval of information from database systems by casual, naive computer users. A "casual user" is defined as an individual who only wishes to execute queries perhaps once or twice a month, and a "naive user" is someone who has little or no expertise in operating a computer and, more specifically for the purposes of this study, is not practiced at querying a database. The research initially focuses on a specific group of casual, naive users, namely a group of clinicians, and analyzes their characteristics as they pertain to the retrieval of information from a computer database. The characteristics thus elicited are then used to create the requirements for a database interface that would, potentially, be acceptable to this group. An interface having the desired requirements is then proposed. This interface consists, from a user's perspective, of three basic components. A graphical model gives a picture of the database structure. Windows give the ability to view different areas of the database, physically group together items that come under one logical heading and provide the user with immediate access to the data item names used by the system. Finally, a natural language query language provides a means of entering a query in a syntax (that of ordinary English) which is familiar to the user. The graphical model is a logical abstraction of the database. Unlike other database interfaces, it is not constrained by the model (relational, hierarchical, network) underlying the database management system, with the one caveat that the graphical model should not imply any connections which cannot be supported by the management system. Versions of the interface are implemented on both eight-bit and sixteen-bit microcomputers, and testing is conducted in order to validate the acceptability of the interface and to discover the …
Higher Compression from the Burrows-Wheeler Transform with New Algorithms for the List Update Problem
Burrows-Wheeler compression is a three stage process in which the data is transformed with the Burrows-Wheeler Transform, then transformed with Move-To-Front, and finally encoded with an entropy coder. Move-To-Front, Transpose, and Frequency Count are some of the many algorithms used on the List Update problem. In 1985, Competitive Analysis first showed the superiority of Move-To-Front over Transpose and Frequency Count for the List Update problem with arbitrary data. Earlier studies due to Bitner assumed independent identically distributed data, and showed that while Move-To-Front adapts to a distribution faster, incurring less overwork, the asymptotic costs of Frequency Count and Transpose are less. The improvements to Burrows-Wheeler compression this work covers are increases in the amount, not speed, of compression. Best x of 2x-1 is a new family of algorithms created to improve on Move-To-Front's processing of the output of the Burrows-Wheeler Transform which is like piecewise independent identically distributed data. Other algorithms for both the middle stage of Burrows-Wheeler compression and the List Update problem for which overwork, asymptotic cost, and competitive ratios are also analyzed are several variations of Move One From Front and part of the randomized algorithm Timestamp. The Best x of 2x - 1 family includes Move-To-Front, the part of Timestamp of interest, and Frequency Count. Lastly, a greedy choosing scheme, Snake, switches back and forth as the amount of compression that two List Update algorithms achieves fluctuates, to increase overall compression. The Burrows-Wheeler Transform is based on sorting of contexts. The other improvements are better sorting orders, such as “aeioubcdf...” instead of standard alphabetical “abcdefghi...” on English text data, and an algorithm for computing orders for any data, and Gray code sorting instead of standard sorting. Both techniques lessen the overwork incurred by whatever List Update algorithms are used by reducing the difference between adjacent sorted …
Hopfield Networks as an Error Correcting Technique for Speech Recognition
I experimented with Hopfield networks in the context of a voice-based, query-answering system. Hopfield networks are used to store and retrieve patterns. I used this technique to store queries represented as natural language sentences and I evaluated the accuracy of the technique for error correction in a spoken question-answering dialog between a computer and a user. I show that the use of an auto-associative Hopfield network helps make the speech recognition system more fault tolerant. I also looked at the available encoding schemes to convert a natural language sentence into a pattern of zeroes and ones that can be stored in the Hopfield network reliably, and I suggest scalable data representations which allow storing a large number of queries.
Impact of actual interference on capacity and call admission control in a CDMA network.
An overwhelming number of models in the literature use average inter-cell interference for the calculation of capacity of a Code Division Multiple Access (CDMA) network. The advantage gained in terms of simplicity by using such models comes at the cost of rendering the exact location of a user within a cell irrelevant. We calculate the actual per-user interference and analyze the effect of user-distribution within a cell on the capacity of a CDMA network. We show that even though the capacity obtained using average interference is a good approximation to the capacity calculated using actual interference for a uniform user distribution, the deviation can be tremendously large for non-uniform user distributions. Call admission control (CAC) algorithms are responsible for efficient management of a network's resources while guaranteeing the quality of service and grade of service, i.e., accepting the maximum number of calls without affecting the quality of service of calls already present in the network. We design and implement global and local CAC algorithms, and through simulations compare their network throughput and blocking probabilities for varying mobility scenarios. We show that even though our global CAC is better at resource management, the lack of substantial gain in network throughput and exponential increase in complexity makes our optimized local CAC algorithm a much better choice for a given traffic distribution profile.
Improved Approximation Algorithms for Geometric Packing Problems With Experimental Evaluation
Geometric packing problems are NP-complete problems that arise in VLSI design. In this thesis, we present two novel algorithms using dynamic programming to compute exactly the maximum number of k x k squares of unit size that can be packed without overlap into a given n x m grid. The first algorithm was implemented and ran successfully on problems of large input up to 1,000,000 nodes for different values. A heuristic based on the second algorithm is implemented. This heuristic is fast in practice, but may not always be giving optimal times in theory. However, over a wide range of random data this version of the algorithm is giving very good solutions very fast and runs on problems of up to 100,000,000 nodes in a grid and different ranges for the variables. It is also shown that this version of algorithm is clearly superior to the first algorithm and has shown to be very efficient in practice.
Independent Quadtrees
This dissertation deals with the problem of manipulating and storing an image using quadtrees. A quadtree is a tree in which each node has four ordered children or is a leaf. It can be used to represent an image via hierarchical decomposition. The image is broken into four regions. A region can be a solid color (homogeneous) or a mixture of colors (heterogeneous). If a region is heterogeneous it is broken into four subregions, and the process continues recursively until all subregions are homogeneous. The traditional quadtree suffers from dependence on the underlying grid. The grid coordinate system is implicit, and therefore fixed. The fixed coordinate system implies a rigid tree. A rigid tree cannot be translated, scaled, or rotated. Instead, a new tree must be built which is the result of one of these transformations. This dissertation introduces the independent quadtree. The independent quadtree is free of any underlying coordinate system. The tree is no longer rigid and can be easily translated, scaled, or rotated. Algorithms to perform these operations axe presented. The translation and rotation algorithms take constant time. The scaling algorithm has linear time in the number nodes in the tree. The disadvantage of independent quadtrees is the longer generation and display time. This dissertation also introduces an alternate method of hierarchical decomposition. This new method finds the largest homogeneous block with respect to the corners of the image. This block defines the division point for the decomposition. If the size of the block is below some cutoff point, it is deemed to be to small to make the overhead worthwhile and the traditional method is used instead. This new method is compared to the traditional method on randomly generated rectangles, triangles, and circles. The new method is shown to use significantly less space for all three …
Information Storage and Retrieval Systems
This thesis describes the implementation of a general purpose personal information storage and retrieval system. Chapter one contains an introduction to information storage and retrieval. Chapter two contains a description of the features a useful personal information retrieval system should contain. This description forms the basis for the implementation of the personal information storage and retrieval system described in chapter three. The system is implemented in UCSD Pascal on an Apple II microcomputer.
Inheritance Problems in Object-Oriented Database
This research is concerned with inheritance as used in object-oriented database. More specifically, partial bi-directional inheritance among classes is examined. In partial inheritance, a class can inherit a proper subset of instance variables from another class. Two subclasses of the same superclass do not need to inherit the same proper subset of instance variables from their superclass. Bi-directional partial inheritance allows a class to inherit instance variables from its subclass. The prototype of an object-oriented database that supports both full and partial bi-directional inheritance among classes was developed on top of an existing relational database management system. The prototype was tested with two database applications. One database application needs full and partial inheritance. The second database application required bi-directional inheritance. The result of this testing suggests both advantages and disadvantages of partial bi-directional inheritance. Future areas of research are also suggested.
Intelligent Memory Management Heuristics
Automatic memory management is crucial in implementation of runtime systems even though it induces a significant computational overhead. In this thesis I explore the use of statistical properties of the directed graph describing the set of live data to decide between garbage collection and heap expansion in a memory management algorithm combining the dynamic array represented heaps with a mark and sweep garbage collector to enhance its performance. The sampling method predicting the density and the distribution of useful data is implemented as a partial marking algorithm. The algorithm randomly marks the nodes of the directed graph representing the live data at different depths with a variable probability factor p. Using the information gathered by the partial marking algorithm in the current step and the knowledge gathered in the previous iterations, the proposed empirical formula predicts with reasonable accuracy the density of live nodes on the heap, to decide between garbage collection and heap expansion. The resulting heuristics are tested empirically and shown to improve overall execution performance significantly in the context of the Jinni Prolog compiler's runtime system.
An Interpreter for the Basic Programming Language
In this thesis, the first chapter provides the general description of this interpreter. The second chapter contains a formal definition of the syntax of BASIC along with an introduction to the semantics. The third chapter contains the design of data structure. The fourth chapter contains the description of algorithms along with stages for testing the interpreter and the design of debug output. The stages and actions-are represented internally to the computer in tabular forms. For statement parsing working syntax equations are established. They serve as standards for the conversion of source statements into object pseudocodes. As the statement is parsed for legal form, pseudocodes for this statement are created. For pseudocode execution, pseudocodes are represented internally to the computer in tabular forms.
Intrinsic and Extrinsic Adaptation in a Simulated Combat Environment
Genetic algorithm and artificial life techniques are applied to the development of challenging and interesting opponents in a combat-based computer game. Computer simulations are carried out against an idealized human player to gather data on the effectiveness of the computer generated opponents.
A Left-to-Right Parsing Algorithm for THIS Programming Language
The subject of this investigation is a specific set of parsers known as LR parsers. Of primary interest is a LR parsing method developed by DeRemer which specifies a translation method which can be defined by a Deterministic Push-Down Automation (DPDA). The method of investigation was to apply DeRemer's parsing technique to a specific language known as THIS Programming Language (TPL). The syntax of TPL was redefined as state diagrams and these state diagrams were, in turn, encoded into two tables--a State-Action table and a Transition table. The tables were then incorporated into a PL/l adaptation of DeRemer's algorithm and tested against various TPL statements.
Linear Unification
Efficient unification is considered within the context of logic programming. Unification is explained in terms of equivalence classes made up of terms, where there is a constraint that no equivalence class may contain more than one function term. It is demonstrated that several well-known "efficient" but nonlinear unification algorithms continually maintain the said constraint as a consequence of their choice of data structure for representing equivalence classes. The linearity of the Paterson-Wegman unification algorithm is shown largely to be a consequence of its use of unbounded lists of pointers for representing equivalences between terms, which allows it to avoid the nonlinearity of "union-find".
A Machine Learning Method Suitable for Dynamic Domains
The efficacy of a machine learning technique is domain dependent. Some machine learning techniques work very well for certain domains but are ill-suited for other domains. One area that is of real-world concern is the flexibility with which machine learning techniques can adapt to dynamic domains. Currently, there are no known reports of any system that can learn dynamic domains, short of starting over (i.e., re-running the program). Starting over is neither time nor cost efficient for real-world production environments. This dissertation studied a method, referred to as Experience Based Learning (EBL), that attempts to deal with conditions related to learning dynamic domains. EBL is an extension of Instance Based Learning methods. The hypothesis of the study related to this research was that the EBL method would automatically adjust to domain changes and still provide classification accuracy similar to methods that require starting over. To test this hypothesis, twelve widely studied machine learning datasets were used. A dynamic domain was simulated by presenting these datasets in an uninterrupted cycle of train, test, and retrain. The order of the twelve datasets and the order of records within each dataset were randomized to control for order biases in each of ten runs. As a result, these methods provided datasets that represent extreme levels of domain change. Using the above datasets, EBL's mean classification accuracies for each dataset were compared to the published static domain results of other machine learning systems. The results indicated that the EBL's system performance was not statistically different (p>0.30) from the other machine learning methods. These results indicate that the EBL system is able to adjust to an extreme level of domain change and yet produce satisfactory results. This finding supports the use of the EBL method in real-world environments that incur rapid changes to both variables and …
Modeling Complex Forest Ecology in a Parallel Computing Infrastructure
Effective stewardship of forest ecosystems make it imperative to measure, monitor, and predict the dynamic changes of forest ecology. Measuring and monitoring provides us a picture of a forest's current state and the necessary data to formulate models for prediction. However, societal and natural events alter the course of a forest's development. A simulation environment that takes into account these events will facilitate forest management. In this thesis, we describe an efficient parallel implementation of a land cover use model, Mosaic, and discuss the development efforts to incorporate spatial interaction and succession dynamics into the model. To evaluate the performance of our implementation, an extensive set of simulation experiments was carried out using a dataset representing the H.J. Andrews Forest in the Oregon Cascades. Results indicate that a significant reduction in the simulation execution time of our parallel model can be achieved as compared to uni-processor simulations.
Modeling the Impact and Intervention of a Sexually Transmitted Disease: Human Papilloma Virus
Many human papilloma virus (HPV) types are sexually transmitted and HPV DNA types 16, 18, 31, and 45 account for more than 75% if all cervical dysplasia. Candidate vaccines are successfully completing US Federal Drug Agency (FDA) phase III testing and several drug companies are in licensing arbitration. Once this vaccine become available it is unlikely that 100% vaccination coverage will be probable; hence, the need for vaccination strategies that will have the greatest reduction on the endemic prevalence of HPV. This thesis introduces two discrete-time models for evaluating the effect of demographic-biased vaccination strategies: one model incorporates temporal demographics (i.e., age) in population compartments; the other non-temporal demographics (i.e., race, ethnicity). Also presented is an intuitive Web-based interface that was developed to allow the user to evaluate the effects on prevalence of a demographic-biased intervention by tailoring the model parameters to specific demographics and geographical region.
Multi-Agent Architecture for Internet Information Extraction and Visualization
The World Wide Web is one of the largest sources of information; more and more applications are being developed daily to make use of this information. This thesis presents a multi-agent architecture that deals with some of the issues related to Internet data extraction. The primary issue addresses the reliable, efficient and quick extraction of data through the use of HTTP performance monitoring agents. A second issue focuses on how to make use of available data to take decisions and alert the user when there is change in data; this is done with the help of user agents that are equipped with a Defeasible reasoning interpreter. An additional issue is the visualization of extracted data; this is done with the aid of VRML visualization agents. The cited issues are discussed using stock portfolio management as an example application.
The Multipath Fault-Tolerant Protocol for Routing in Packet-Switched Communication Network
In order to provide improved service quality to applications, networks need to address the need for reliability of data delivery. Reliability can be improved by incorporating fault tolerance into network routing, wherein a set of multiple routes are used for routing between a given source and destination. This thesis proposes a new fault-tolerant protocol, called the Multipath Fault Tolerant Protocol for Routing (MFTPR), to improve the reliability of network routing services. The protocol is based on a multipath discovery algorithm, the Quasi-Shortest Multipath (QSMP), and is designed to work in conjunction with the routing protocol employed by the network. MFTPR improves upon the QSMP algorithm by finding more routes than QSMP, and also provides for maintenance of these routes in the event of failure of network components. In order to evaluate the resilience of a pair of paths to failure, this thesis proposes metrics that evaluate the non-disjointness of a pair of paths and measure the probability of simultaneous failure of these paths. The performance of MFTPR to find alternate routes based on these metrics is analyzed through simulation.
Multiresolutional/Fractal Compression of Still and Moving Pictures
The scope of the present dissertation is a deep lossy compression of still and moving grayscale pictures while maintaining their fidelity, with a specific goal of creating a working prototype of a software system for use in low bandwidth transmission of still satellite imagery and weather briefings with the best preservation of features considered important by the end user.
A Neural Network Configuration Compiler Based on the Adaptrode Neuronal Model
A useful compiler has been designed that takes a high level neural network specification and constructs a low level configuration file explicitly specifying all network parameters and connections. The neural network model for which this compiler was designed is the adaptrode neuronal model, and the configuration file created can be used by the Adnet simulation engine to perform network experiments. The specification language is very flexible and provides a general framework from which almost any network wiring configuration may be created. While the compiler was created for the specialized adaptrode model, the wiring specification algorithms could also be used to specify the connections in other types of networks.
The Object-Oriented Database Editor
Because of an interest in object-oriented database systems, designers have created systems to store and manipulate specific sets of abstract data types that belong to the real world environment they represent. Unfortunately, the advantage of these systems is also a disadvantage since no single object-oriented database system can be used for all applications. This paper describes an object-oriented database management system called the Object-oriented Database Editor (ODE) which overcomes this disadvantage by allowing designers to create and execute an object-oriented database that represents any type of environment and then to store it and simulate that environment. As conditions within the environment change, the designer can use ODE to alter that environment without loss of data. ODE provides a flexible environment for the user; it is efficient; and it can run on a personal computer.
A Parallel Programming Language
The problem of programming a parallel processor is discussed. Previous methods of programming a parallel processor, analyzing a program for parallel paths, and special language features are discussed. Graph theory is used to define the three basic programming constructs: choice, sequence, repetition. The concept of mechanized programming is expanded to allow for total separation of control and computational sections of a program. A definition of a language is presented which provides for this separation. A method for developing the program graph is discussed. The control graph and data graph are developed separately. The two graphs illustrate control and data predecessor relationships used in determining parallel elements of a program.
Performance comparison of data distribution management strategies in large-scale distributed simulation.
Data distribution management (DDM) is a High Level Architecture/Run-time Infrastructure (HLA/RTI) service that manages the distribution of state updates and interaction information in large-scale distributed simulations. The key to efficient DDM is to limit and control the volume of data exchanged during the simulation, to relay data to only those hosts requiring the data. This thesis focuses upon different DDM implementations and strategies. This thesis includes analysis of three DDM methods including the fixed grid-based, dynamic grid-based, and region-based methods. Also included is the use of multi-resolution modeling with various DDM strategies and analysis of the performance effects of aggregation/disaggregation with these strategies. Running numerous federation executions, I simulate four different scenarios on a cluster of workstations with a mini-RTI Kit framework and propose a set of benchmarks for a comparison of the DDM schemes. The goals of this work are to determine the most efficient model for applying each DDM scheme, discover the limitations of the scalability of the various DDM methods, evaluate the effects of aggregation/disaggregation on performance and resource usage, and present accepted benchmarks for use in future research.
Back to Top of Screen