You limited your search to:

  Partner: UNT Libraries
 Degree Discipline: Engineering Technology
 Collection: UNT Theses and Dissertations
Effect of engineered surfaces on valve performance.

Effect of engineered surfaces on valve performance.

Access: Use of this item is restricted to the UNT Community.
Date: December 2000
Creator: Pope, Larry G.
Description: Performance of air operated valves is a major maintenance concern in process industries. Anecdotal information indicates that reliability of some high maintenance valves has been improved by using an ion deposition process to achieve engineered surfaces on selected components. This project compared friction for various surface treatments of selected valve components. Results indicate valve performance may be slightly more consistent when an engineered surface is applied in the valve packing area; however surface treatment in this area does not appear to have a dominant affect on reducing valve friction. Results indicate a linear relation between stem friction and torque applied to packing flange nuts, and even after a valve is in service, controlled packing adjustments can be made without significantly changing valve stroke time.
Contributing Partner: UNT Libraries
Propagation analysis of a 900 MHz spread spectrum centralized traffic signal control system.

Propagation analysis of a 900 MHz spread spectrum centralized traffic signal control system.

Date: May 2006
Creator: Urban, Brian L.
Description: The objective of this research is to investigate different propagation models to determine if specified models accurately predict received signal levels for short path 900 MHz spread spectrum radio systems. The City of Denton, Texas provided data and physical facilities used in the course of this study. The literature review indicates that propagation models have not been studied specifically for short path spread spectrum radio systems. This work should provide guidelines and be a useful example for planning and implementing such radio systems. The propagation model involves the following considerations: analysis of intervening terrain, path length, and fixed system gains and losses.
Contributing Partner: UNT Libraries
MBE Growth and Instrumentation

MBE Growth and Instrumentation

Date: May 2006
Creator: Tarigopula, Sriteja
Description: This thesis mainly aims at application of principles of engineering technology in the field of molecular beam epitaxy (MBE). MBE is a versatile technique for growing epitaxial thin films of semiconductors and metals by impinging molecular beams of atoms onto a heated substrate under ultra-high vacuum (UHV) conditions. Here, a LabVIEW® (laboratory virtual instrument engineering workbench) software (National Instruments Corp., http://www.ni.com/legal/termsofuse/unitedstates/usH) program is developed that would form the basis of a real-time control system that would transform MBE into a true-production technology. Growth conditions can be monitored in real-time with the help of reflection high energy electron diffraction (RHEED) technique. The period of one RHEED oscillation corresponds exactly to the growth of one monolayer of atoms of the semiconductor material. The PCI-1409 frame grabber card supplied by National Instruments is used in conjunction with the LabVIEW software to capture the RHEED images and capture the intensity of RHEED oscillations. The intensity values are written to a text file and plotted in the form of a graph. A fast Fourier transform of these oscillations gives the growth rate of the epi-wafer being grown. All the data being captured by the LabVIEW program can be saved to file forming a growth pedigree ...
Contributing Partner: UNT Libraries
A Study of Laser Direct Writing for All Polymer Single Mode Passive Optical Channel Waveguide Devices

A Study of Laser Direct Writing for All Polymer Single Mode Passive Optical Channel Waveguide Devices

Date: May 2008
Creator: Borden, Bradley W.
Description: The objective of this research is to investigate the use of laser direct writing to micro-pattern low loss passive optical channel waveguide devices using a new hybrid organic/inorganic polymer. Review of literature shows previous methods of optical waveguide device patterning as well as application of other non-polymer materials. System setup and design of the waveguide components are discussed. Results show that laser direct writing of the hybrid polymer produce single mode interconnects with a loss of less 1dB/cm.
Contributing Partner: UNT Libraries
Effects of a surface engineered metallic coating on elastomeric valve stem seal leakage

Effects of a surface engineered metallic coating on elastomeric valve stem seal leakage

Date: December 2000
Creator: Taylor, John Abner
Description: Valve stem seal leakage is a major source of fugitive emissions, and controlling these emissions can result in added expense in leak detection and repair programs. Elastomeric O-rings can be used as valve stem seals, and O-ring manufacturers recommend lubrication of elastomeric seals to prevent damage and to assure proper sealing. In this research, a metallic coating was applied as a lubricant using a vacuum vapor deposition process to the surface of elastomeric valve stem seals. Valve stem leak measurements were taken to determine if the coated O-rings, alone or with the recommended lubrication, reduced valve stem seal leakage. This research determined that the metallic coating did not reduce valve stem leakage.
Contributing Partner: UNT Libraries
Characterization of boron nitride thin films on silicon (100) wafer.

Characterization of boron nitride thin films on silicon (100) wafer.

Date: August 2007
Creator: Maranon, Walter
Description: Cubic boron nitride (cBN) thin films offer attractive mechanical and electrical properties. The synthesis of cBN films have been deposited using both physical and chemical vapor deposition methods, which generate internal residual, stresses that result in delamination of the film from substrates. Boron nitride films were deposited using electron beam evaporation without bias voltage and nitrogen bombardment (to reduce stresses) were characterize using FTIR, XRD, SEM, EDS, TEM, and AFM techniques. In addition, a pin-on-disk tribological test was used to measure coefficient of friction. Results indicated that samples deposited at 400°C contained higher cubic phase of BN compared to those films deposited at room temperature. A BN film containing cubic phase deposited at 400°C for 2 hours showed 0.1 friction coefficient.
Contributing Partner: UNT Libraries
Indoor Propagation Modeling at 2.4 GHz for IEEE 802.11 Networks

Indoor Propagation Modeling at 2.4 GHz for IEEE 802.11 Networks

Date: December 2005
Creator: Tummala, Dinesh
Description: Indoor use of wireless systems poses one of the biggest design challenges. It is difficult to predict the propagation of a radio frequency wave in an indoor environment. To assist in deploying the above systems, characterization of the indoor radio propagation channel is essential. The contributions of this work are two-folds. First, in order to build a model, extensive field strength measurements are carried out inside two different buildings. Then, path loss exponents from log-distance path loss model and standard deviations from log-normal shadowing, which statistically describe the path loss models for a different transmitter receiver separations and scenarios, are determined. The purpose of this study is to characterize the indoor channel for 802.11 wireless local area networks at 2.4 GHz frequency. This thesis presents a channel model based on measurements conducted in commonly found scenarios in buildings. These scenarios include closed corridor, open corridor, classroom, and computer lab. Path loss equations are determined using log-distance path loss model and log-normal shadowing. The chi-square test statistic values for each access point are calculated to prove that the observed fading is a normal distribution at 5% significance level. Finally, the propagation models from the two buildings are compared to validate the ...
Contributing Partner: UNT Libraries
A Data Acquisition System Experiment for Gas Temperature and Pressure Measurements on a Liquid-Nitrogen-Powered Vehicle

A Data Acquisition System Experiment for Gas Temperature and Pressure Measurements on a Liquid-Nitrogen-Powered Vehicle

Date: May 1998
Creator: Lui, Samson Sze-Sang
Description: A data acquisition system was set up to measure gas temperatures and pressures at various points on a liquid-nitrogen-powered vehicle. The experiment was attempted to develop a data acquisition method for applications on engines that use liquid air as the fuel. Two thermocouples and a pressure transducer were connected using data acquisition instruments interfaced to a laptop computer to acquire data.
Contributing Partner: UNT Libraries
A Computer-Based Process Control System for a Target Station in a LINAC Facility

A Computer-Based Process Control System for a Target Station in a LINAC Facility

Date: May 1999
Creator: Al-Shantaf, Abdulraouf O.
Description: An event-driven, sequential, process control system was designed for International Isotopes, Inc., to automate and remotely control a target station at the company's linear accelerator facility. The designed system consisted of two major sections: a software program (virtual instrument), which was developed by LabVIEW, and a hardware interface (FieldPoint Modular Distributed I/O System by National Instrument), which had to be a pre-developed system that did not require customization. The designed virtual instrument was tested on a simulation model that mimed the target station. The result was a valid design.
Contributing Partner: UNT Libraries
Design of a Monitoring System for a Plasma Cleaning Machine

Design of a Monitoring System for a Plasma Cleaning Machine

Date: May 1999
Creator: Fooks, Terry M. (Terry Max)
Description: Plasma cleaning is the most effective dry process to remove surface contaminates from a SAW (Surface Acoustical Wave) device. Consistent gas pressures, flows, and good electrical connections between the chamber shelves are necessary for the process to function predictably. In addition, operation of the monitoring system must be transparent to the plasma cleaning unit. This thesis describes a simple solution to the complex problem of monitoring a plasma cleaning system. The monitoring system uses the LabVIEW® G programming language and hardware, both products of National Instruments, Inc.®, to monitor critical parameters necessary to achieve a consistent process when cleaning these devices.
Contributing Partner: UNT Libraries
FIRST PREV 1 2 3 4 NEXT LAST