You limited your search to:

  Partner: UNT Libraries
 Department: Department of Computer Science and Engineering
 Collection: UNT Theses and Dissertations
Joint Schemes for Physical Layer Security and Error Correction

Joint Schemes for Physical Layer Security and Error Correction

Date: August 2011
Creator: Adamo, Oluwayomi Bamidele
Description: The major challenges facing resource constraint wireless devices are error resilience, security and speed. Three joint schemes are presented in this research which could be broadly divided into error correction based and cipher based. The error correction based ciphers take advantage of the properties of LDPC codes and Nordstrom Robinson code. A cipher-based cryptosystem is also presented in this research. The complexity of this scheme is reduced compared to conventional schemes. The securities of the ciphers are analyzed against known-plaintext and chosen-plaintext attacks and are found to be secure. Randomization test was also conducted on these schemes and the results are presented. For the proof of concept, the schemes were implemented in software and hardware and these shows a reduction in hardware usage compared to conventional schemes. As a result, joint schemes for error correction and security provide security to the physical layer of wireless communication systems, a layer in the protocol stack where currently little or no security is implemented. In this physical layer security approach, the properties of powerful error correcting codes are exploited to deliver reliability to the intended parties, high security against eavesdroppers and efficiency in communication system. The notion of a highly secure and reliable ...
Contributing Partner: UNT Libraries
Measuring Semantic Relatedness Using Salient Encyclopedic Concepts

Measuring Semantic Relatedness Using Salient Encyclopedic Concepts

Date: August 2011
Creator: Hassan, Samer
Description: While pragmatics, through its integration of situational awareness and real world relevant knowledge, offers a high level of analysis that is suitable for real interpretation of natural dialogue, semantics, on the other end, represents a lower yet more tractable and affordable linguistic level of analysis using current technologies. Generally, the understanding of semantic meaning in literature has revolved around the famous quote ``You shall know a word by the company it keeps''. In this thesis we investigate the role of context constituents in decoding the semantic meaning of the engulfing context; specifically we probe the role of salient concepts, defined as content-bearing expressions which afford encyclopedic definitions, as a suitable source of semantic clues to an unambiguous interpretation of context. Furthermore, we integrate this world knowledge in building a new and robust unsupervised semantic model and apply it to entail semantic relatedness between textual pairs, whether they are words, sentences or paragraphs. Moreover, we explore the abstraction of semantics across languages and utilize our findings into building a novel multi-lingual semantic relatedness model exploiting information acquired from various languages. We demonstrate the effectiveness and the superiority of our mono-lingual and multi-lingual models through a comprehensive set of evaluations on specialized ...
Contributing Partner: UNT Libraries
Scene Analysis Using Scale Invariant Feature Extraction and Probabilistic Modeling

Scene Analysis Using Scale Invariant Feature Extraction and Probabilistic Modeling

Access: Use of this item is restricted to the UNT Community.
Date: August 2011
Creator: Shen, Yao
Description: Conventional pattern recognition systems have two components: feature analysis and pattern classification. For any object in an image, features could be considered as the major characteristic of the object either for object recognition or object tracking purpose. Features extracted from a training image, can be used to identify the object when attempting to locate the object in a test image containing many other objects. To perform reliable scene analysis, it is important that the features extracted from the training image are detectable even under changes in image scale, noise and illumination. Scale invariant feature has wide applications such as image classification, object recognition and object tracking in the image processing area. In this thesis, color feature and SIFT (scale invariant feature transform) are considered to be scale invariant feature. The classification, recognition and tracking result were evaluated with novel evaluation criterion and compared with some existing methods. I also studied different types of scale invariant feature for the purpose of solving scene analysis problems. I propose probabilistic models as the foundation of analysis scene scenario of images. In order to differential the content of image, I develop novel algorithms for the adaptive combination for multiple features extracted from images. I ...
Contributing Partner: UNT Libraries
Exploring Privacy in Location-based Services Using Cryptographic Protocols

Exploring Privacy in Location-based Services Using Cryptographic Protocols

Date: May 2011
Creator: Vishwanathan, Roopa
Description: Location-based services (LBS) are available on a variety of mobile platforms like cell phones, PDA's, etc. and an increasing number of users subscribe to and use these services. Two of the popular models of information flow in LBS are the client-server model and the peer-to-peer model, in both of which, existing approaches do not always provide privacy for all parties concerned. In this work, I study the feasibility of applying cryptographic protocols to design privacy-preserving solutions for LBS from an experimental and theoretical standpoint. In the client-server model, I construct a two-phase framework for processing nearest neighbor queries using combinations of cryptographic protocols such as oblivious transfer and private information retrieval. In the peer-to-peer model, I present privacy preserving solutions for processing group nearest neighbor queries in the semi-honest and dishonest adversarial models. I apply concepts from secure multi-party computation to realize our constructions and also leverage the capabilities of trusted computing technology, specifically TPM chips. My solution for the dishonest adversarial model is also of independent cryptographic interest. I prove my constructions secure under standard cryptographic assumptions and design experiments for testing the feasibility or practicability of our constructions and benchmark key operations. My experiments show that the proposed ...
Contributing Partner: UNT Libraries
Physical-Layer Network Coding for MIMO Systems

Physical-Layer Network Coding for MIMO Systems

Date: May 2011
Creator: Xu, Ning
Description: The future wireless communication systems are required to meet the growing demands of reliability, bandwidth capacity, and mobility. However, as corruptions such as fading effects, thermal noise, are present in the channel, the occurrence of errors is unavoidable. Motivated by this, the work in this dissertation attempts to improve the system performance by way of exploiting schemes which statistically reduce the error rate, and in turn boost the system throughput. The network can be studied using a simplified model, the two-way relay channel, where two parties exchange messages via the assistance of a relay in between. In such scenarios, this dissertation performs theoretical analysis of the system, and derives closed-form and upper bound expressions of the error probability. These theoretical measurements are potentially helpful references for the practical system design. Additionally, several novel transmission methods including block relaying, permutation modulations for the physical-layer network coding, are proposed and discussed. Numerical simulation results are presented to support the validity of the conclusions.
Contributing Partner: UNT Libraries
Techniques for Improving Uniformity in Direct Mapped Caches

Techniques for Improving Uniformity in Direct Mapped Caches

Date: May 2011
Creator: Nwachukwu, Izuchukwu Udochi
Description: Directly mapped caches are an attractive option for processor designers as they combine fast lookup times with reduced complexity and area. However, directly-mapped caches are prone to higher miss-rates as there are no candidates for replacement on a cache miss, hence data residing in a cache set would have to be evicted to the next level cache. Another issue that inhibits cache performance is the non-uniformity of accesses exhibited by most applications: some sets are under-utilized while others receive the majority of accesses. This implies that increasing the size of caches may not lead to proportionally improved cache hit rates. Several solutions that address cache non-uniformity have been proposed in the literature. These techniques have been proposed over the past decade and each proposal independently claims the benefit of reduced conflict misses. However, because the published results use different benchmarks and different experimental setups, (there is no established frame of reference for comparing these results) it is not easy to compare them. In this work we report a side-by-side comparison of these techniques. Finally, we propose and Adaptive-Partitioned cache for multi-threaded applications. This design limits inter-thread thrashing while dynamically reducing traffic to heavily accessed sets.
Contributing Partner: UNT Libraries
Toward a Data-Type-Based Real Time Geospatial Data Stream Management System

Toward a Data-Type-Based Real Time Geospatial Data Stream Management System

Date: May 2011
Creator: Zhang, Chengyang
Description: The advent of sensory and communication technologies enables the generation and consumption of large volumes of streaming data. Many of these data streams are geo-referenced. Existing spatio-temporal databases and data stream management systems are not capable of handling real time queries on spatial extents. In this thesis, we investigated several fundamental research issues toward building a data-type-based real time geospatial data stream management system. The thesis makes contributions in the following areas: geo-stream data models, aggregation, window-based nearest neighbor operators, and query optimization strategies. The proposed geo-stream data model is based on second-order logic and multi-typed algebra. Both abstract and discrete data models are proposed and exemplified. I further propose two useful geo-stream operators, namely Region By and WNN, which abstract common aggregation and nearest neighbor queries as generalized data model constructs. Finally, I propose three query optimization algorithms based on spatial, temporal, and spatio-temporal constraints of geo-streams. I show the effectiveness of the data model through many query examples. The effectiveness and the efficiency of the algorithms are validated through extensive experiments on both synthetic and real data sets. This work established the fundamental building blocks toward a full-fledged geo-stream database management system and has potential impact in many ...
Contributing Partner: UNT Libraries
A Wireless Traffic Surveillance System Using Video Analytics

A Wireless Traffic Surveillance System Using Video Analytics

Date: May 2011
Creator: Luo, Ning
Description: Video surveillance systems have been commonly used in transportation systems to support traffic monitoring, speed estimation, and incident detection. However, there are several challenges in developing and deploying such systems, including high development and maintenance costs, bandwidth bottleneck for long range link, and lack of advanced analytics. In this thesis, I leverage current wireless, video camera, and analytics technologies, and present a wireless traffic monitoring system. I first present an overview of the system. Then I describe the site investigation and several test links with different hardware/software configurations to demonstrate the effectiveness of the system. The system development process was documented to provide guidelines for future development. Furthermore, I propose a novel speed-estimation analytics algorithm that takes into consideration roads with slope angles. I prove the correctness of the algorithm theoretically, and validate the effectiveness of the algorithm experimentally. The experimental results on both synthetic and real dataset show that the algorithm is more accurate than the baseline algorithm 80% of the time. On average the accuracy improvement of speed estimation is over 3.7% even for very small slope angles.
Contributing Partner: UNT Libraries
Exploring Process-Variation Tolerant Design of Nanoscale Sense Amplifier Circuits

Exploring Process-Variation Tolerant Design of Nanoscale Sense Amplifier Circuits

Date: December 2010
Creator: Okobiah, Oghenekarho
Description: Sense amplifiers are important circuit components of a dynamic random access memory (DRAM), which forms the main memory of digital computers. The ability of the sense amplifier to detect and amplify voltage signals to correctly interpret data in DRAM cells cannot be understated. The sense amplifier plays a significant role in the overall speed of the DRAM. Sense amplifiers require matched transistors for optimal performance. Hence, the effects of mismatch through process variations must be minimized. This thesis presents a research which leads to optimal nanoscale CMOS sense amplifiers by incorporating the effects of process variation early in the design process. The effects of process variation on the performance of a standard voltage sense amplifier, which is used in conventional DRAMs, is studied. Parametric analysis is performed through circuit simulations to investigate which parameters have the most impact on the performance of the sense amplifier. The figures-of-merit (FoMs) used to characterize the circuit are the precharge time, power dissipation, sense delay and sense margin. Statistical analysis is also performed to study the impact of process variations on each FoM. By analyzing the results from the statistical study, a method is presented to select parameter values that minimize the effects of ...
Contributing Partner: UNT Libraries
A Framework for Analyzing and Optimizing Regional Bio-Emergency Response Plans

A Framework for Analyzing and Optimizing Regional Bio-Emergency Response Plans

Date: December 2010
Creator: Schneider, Tamara
Description: The presence of naturally occurring and man-made public health threats necessitate the design and implementation of mitigation strategies, such that adequate response is provided in a timely manner. Since multiple variables, such as geographic properties, resource constraints, and government mandated time-frames must be accounted for, computational methods provide the necessary tools to develop contingency response plans while respecting underlying data and assumptions. A typical response scenario involves the placement of points of dispensing (PODs) in the affected geographic region to supply vaccines or medications to the general public. Computational tools aid in the analysis of such response plans, as well as in the strategic placement of PODs, such that feasible response scenarios can be developed. Due to the sensitivity of bio-emergency response plans, geographic information, such as POD locations, must be kept confidential. The generation of synthetic geographic regions allows for the development of emergency response plans on non-sensitive data, as well as for the study of the effects of single geographic parameters. Further, synthetic representations of geographic regions allow for results to be published and evaluated by the scientific community. This dissertation presents methodology for the analysis of bio-emergency response plans, methods for plan optimization, as well as methodology ...
Contributing Partner: UNT Libraries