You limited your search to:

  Partner: UNT Libraries
 Department: Department of Computer Science and Engineering
 Collection: UNT Theses and Dissertations
Distributed Frameworks Towards Building an Open Data Architecture

Distributed Frameworks Towards Building an Open Data Architecture

Date: May 2015
Creator: Venumuddala, Ramu Reddy
Description: Data is everywhere. The current Technological advancements in Digital, Social media and the ease at which the availability of different application services to interact with variety of systems are causing to generate tremendous volumes of data. Due to such varied services, Data format is now not restricted to only structure type like text but can generate unstructured content like social media data, videos and images etc. The generated Data is of no use unless been stored and analyzed to derive some Value. Traditional Database systems comes with limitations on the type of data format schema, access rates and storage sizes etc. Hadoop is an Apache open source distributed framework that support storing huge datasets of different formatted data reliably on its file system named Hadoop File System (HDFS) and to process the data stored on HDFS using MapReduce programming model. This thesis study is about building a Data Architecture using Hadoop and its related open source distributed frameworks to support a Data flow pipeline on a low commodity hardware. The Data flow components are, sourcing data, storage management on HDFS and data access layer. This study also discuss about a use case to utilize the architecture components. Sqoop, a framework ...
Contributing Partner: UNT Libraries
Investigation on Segmentation, Recognition and 3D Reconstruction of Objects Based on Lidar Data Or Mri

Investigation on Segmentation, Recognition and 3D Reconstruction of Objects Based on Lidar Data Or Mri

Date: May 2015
Creator: Tang, Shijun
Description: Segmentation, recognition and 3D reconstruction of objects have been cutting-edge research topics, which have many applications ranging from environmental and medical to geographical applications as well as intelligent transportation. In this dissertation, I focus on the study of segmentation, recognition and 3D reconstruction of objects using LiDAR data/MRI. Three main works are that (I). Feature extraction algorithm based on sparse LiDAR data. A novel method has been proposed for feature extraction from sparse LiDAR data. The algorithm and the related principles have been described. Also, I have tested and discussed the choices and roles of parameters. By using correlation of neighboring points directly, statistic distribution of normal vectors at each point has been effectively used to determine the category of the selected point. (II). Segmentation and 3D reconstruction of objects based on LiDAR/MRI. The proposed method includes that the 3D LiDAR data are layered, that different categories are segmented, and that 3D canopy surfaces of individual tree crowns and clusters of trees are reconstructed from LiDAR point data based on a region active contour model. The proposed method allows for delineations of 3D forest canopy naturally from the contours of raw LiDAR point clouds. The proposed model is suitable not ...
Contributing Partner: UNT Libraries
The Procedural Generation of Interesting Sokoban Levels

The Procedural Generation of Interesting Sokoban Levels

Date: May 2015
Creator: Taylor, Joshua
Description: As video games continue to become larger, more complex, and more costly to produce, research into methods to make game creation easier and faster becomes more valuable. One such research topic is procedural generation, which allows the computer to assist in the creation of content. This dissertation presents a new algorithm for the generation of Sokoban levels. Sokoban is a grid-based transport puzzle which is computational interesting due to being PSPACE-complete. Beyond just generating levels, the question of whether or not the levels created by this algorithm are interesting to human players is explored. A study was carried out comparing player attention while playing hand made levels versus their attention during procedurally generated levels. An auditory Stroop test was used to measure attention without disrupting play.
Contributing Partner: UNT Libraries
Space and Spectrum Engineered High Frequency Components and Circuits

Space and Spectrum Engineered High Frequency Components and Circuits

Access: Use of this item is restricted to the UNT Community.
Date: May 2015
Creator: Arigong, Bayaner
Description: With the increasing demand on wireless and portable devices, the radio frequency front end blocks are required to feature properties such as wideband, high frequency, multiple operating frequencies, low cost and compact size. However, the current radio frequency system blocks are designed by combining several individual frequency band blocks into one functional block, which increase the cost and size of devices. To address these issues, it is important to develop novel approaches to further advance the current design methodologies in both space and spectrum domains. In recent years, the concept of artificial materials has been proposed and studied intensively in RF/Microwave, Terahertz, and optical frequency range. It is a combination of conventional materials such as air, wood, metal and plastic. It can achieve the material properties that have not been found in nature. Therefore, the artificial material (i.e. meta-materials) provides design freedoms to control both the spectrum performance and geometrical structures of radio frequency front end blocks and other high frequency systems. In this dissertation, several artificial materials are proposed and designed by different methods, and their applications to different high frequency components and circuits are studied. First, quasi-conformal mapping (QCM) method is applied to design plasmonic wave-adapters and couplers ...
Contributing Partner: UNT Libraries
Trajectory Analytics

Trajectory Analytics

Date: May 2015
Creator: Santiteerakul, Wasana
Description: The numerous surveillance videos recorded by a single stationary wide-angle-view camera persuade the use of a moving point as the representation of each small-size object in wide video scene. The sequence of the positions of each moving point can be used to generate a trajectory containing both spatial and temporal information of object's movement. In this study, we investigate how the relationship between two trajectories can be used to recognize multi-agent interactions. For this purpose, we present a simple set of qualitative atomic disjoint trajectory-segment relations which can be utilized to represent the relationships between two trajectories. Given a pair of adjacent concurrent trajectories, we segment the trajectory pair to get the ordered sequence of related trajectory-segments. Each pair of corresponding trajectory-segments then is assigned a token associated with the trajectory-segment relation, which leads to the generation of a string called a pairwise trajectory-segment relationship sequence. From a group of pairwise trajectory-segment relationship sequences, we utilize an unsupervised learning algorithm, particularly the k-medians clustering, to detect interesting patterns that can be used to classify lower-level multi-agent activities. We evaluate the effectiveness of the proposed approach by comparing the activity classes predicted by our method to the actual classes from the ...
Contributing Partner: UNT Libraries
Video Analytics with Spatio-Temporal Characteristics of Activities

Video Analytics with Spatio-Temporal Characteristics of Activities

Date: May 2015
Creator: Cheng, Guangchun
Description: As video capturing devices become more ubiquitous from surveillance cameras to smart phones, the demand of automated video analysis is increasing as never before. One obstacle in this process is to efficiently locate where a human operator’s attention should be, and another is to determine the specific types of activities or actions without ambiguity. It is the special interest of this dissertation to locate spatial and temporal regions of interest in videos and to develop a better action representation for video-based activity analysis. This dissertation follows the scheme of “locating then recognizing” activities of interest in videos, i.e., locations of potentially interesting activities are estimated before performing in-depth analysis. Theoretical properties of regions of interest in videos are first exploited, based on which a unifying framework is proposed to locate both spatial and temporal regions of interest with the same settings of parameters. The approach estimates the distribution of motion based on 3D structure tensors, and locates regions of interest according to persistent occurrences of low probability. Two contributions are further made to better represent the actions. The first is to construct a unifying model of spatio-temporal relationships between reusable mid-level actions which bridge low-level pixels and high-level activities. Dense ...
Contributing Partner: UNT Libraries
Exploration of Visual, Acoustic, and Physiological Modalities to Complement Linguistic Representations for Sentiment Analysis

Exploration of Visual, Acoustic, and Physiological Modalities to Complement Linguistic Representations for Sentiment Analysis

Access: Use of this item is restricted to the UNT Community.
Date: December 2014
Creator: Pérez-Rosas, Verónica
Description: This research is concerned with the identification of sentiment in multimodal content. This is of particular interest given the increasing presence of subjective multimodal content on the web and other sources, which contains a rich and vast source of people's opinions, feelings, and experiences. Despite the need for tools that can identify opinions in the presence of diverse modalities, most of current methods for sentiment analysis are designed for textual data only, and few attempts have been made to address this problem. The dissertation investigates techniques for augmenting linguistic representations with acoustic, visual, and physiological features. The potential benefits of using these modalities include linguistic disambiguation, visual grounding, and the integration of information about people's internal states. The main goal of this work is to build computational resources and tools that allow sentiment analysis to be applied to multimodal data. This thesis makes three important contributions. First, it shows that modalities such as audio, video, and physiological data can be successfully used to improve existing linguistic representations for sentiment analysis. We present a method that integrates linguistic features with features extracted from these modalities. Features are derived from verbal statements, audiovisual recordings, thermal recordings, and physiological sensors signals. The resulting ...
Contributing Partner: UNT Libraries
Modeling and Analysis of Intentional And Unintentional Security Vulnerabilities in a Mobile Platform

Modeling and Analysis of Intentional And Unintentional Security Vulnerabilities in a Mobile Platform

Date: December 2014
Creator: Fazeen, Mohamed & Issadeen, Mohamed
Description: Mobile phones are one of the essential parts of modern life. Making a phone call is not the main purpose of a smart phone anymore, but merely one of many other features. Online social networking, chatting, short messaging, web browsing, navigating, and photography are some of the other features users enjoy in modern smartphones, most of which are provided by mobile apps. However, with this advancement, many security vulnerabilities have opened up in these devices. Malicious apps are a major threat for modern smartphones. According to Symantec Corp., by the middle of 2013, about 273,000 Android malware apps were identified. It is a complex issue to protect everyday users of mobile devices from the attacks of technologically competent hackers, illegitimate users, trolls, and eavesdroppers. This dissertation emphasizes the concept of intention identification. Then it looks into ways to utilize this intention identification concept to enforce security in a mobile phone platform. For instance, a battery monitoring app requiring SMS permissions indicates suspicious intention as battery monitoring usually does not need SMS permissions. Intention could be either the user's intention or the intention of an app. These intentions can be identified using their behavior or by using their source code. Regardless ...
Contributing Partner: UNT Libraries
A New Look at Retargetable Compilers

A New Look at Retargetable Compilers

Date: December 2014
Creator: Burke, Patrick William
Description: Consumers demand new and innovative personal computing devices every 2 years when their cellular phone service contracts are renewed. Yet, a 2 year development cycle for the concurrent development of both hardware and software is nearly impossible. As more components and features are added to the devices, maintaining this 2 year cycle with current tools will become commensurately harder. This dissertation delves into the feasibility of simplifying the development of such systems by employing heterogeneous systems on a chip in conjunction with a retargetable compiler such as the hybrid computer retargetable compiler (Hy-C). An example of a simple architecture description of sufficient detail for use with a retargetable compiler like Hy-C is provided. As a software engineer with 30 years of experience, I have witnessed numerous system failures. A plethora of software development paradigms and tools have been employed to prevent software errors, but none have been completely successful. Much discussion centers on software development in the military contracting market, as that is my background. The dissertation reviews those tools, as well as some existing retargetable compilers, in an attempt to determine how those errors occurred and how a system like Hy-C could assist in reducing future software errors. In ...
Contributing Partner: UNT Libraries
Smartphone-based Household Travel Survey-a Literature Review, an App, and a Pilot Survey

Smartphone-based Household Travel Survey-a Literature Review, an App, and a Pilot Survey

Access: Use of this item is restricted to the UNT Community.
Date: December 2014
Creator: Wang, Qian
Description: High precision data from household travel survey (HTS) is extremely important for the transportation research, traffic models and policy formulation. Traditional methods of data collection were imprecise because they relied on people’s memories of trip information, such as date and location, and the remainder data had to be obtained by certain supplemental tools. The traditional methods suffered from intensive labor, large time consumption, and unsatisfactory data precision. Recent research trends to employ smartphone apps to collect HTS data. In this study, there are two goals to be addressed. First, a smartphone app is developed to realize a smartphone-based method only for data collection. Second, the researcher evaluates whether this method can supply or replace the traditional tools of HTS. Based on this premise, the smartphone app, TravelSurvey, is specially developed and used for this study. TravelSurvey is currently compatible with iPhone 4 or higher and iPhone Operating System (iOS) 6 or higher, except iPhone 6 or iPhone 6 plus and iOS 8. To evaluate the feasibility, eight individuals are recruited to participate in a pilot HTS. Afterwards, seven of them are involved in a semi-structured interview. The interview is designed to collect interviewees’ feedback directly, so the interview mainly concerns ...
Contributing Partner: UNT Libraries
Uncertainty Evaluation in Large-scale Dynamical Systems: Theory and Applications

Uncertainty Evaluation in Large-scale Dynamical Systems: Theory and Applications

Date: December 2014
Creator: Zhou, Yi
Description: Significant research efforts have been devoted to large-scale dynamical systems, with the aim of understanding their complicated behaviors and managing their responses in real-time. One pivotal technological obstacle in this process is the existence of uncertainty. Although many of these large-scale dynamical systems function well in the design stage, they may easily fail when operating in realistic environment, where environmental uncertainties modulate system dynamics and complicate real-time predication and management tasks. This dissertation aims to develop systematic methodologies to evaluate the performance of large-scale dynamical systems under uncertainty, as a step toward real-time decision support. Two uncertainty evaluation approaches are pursued: the analytical approach and the effective simulation approach. The analytical approach abstracts the dynamics of original stochastic systems, and develops tractable analysis (e.g., jump-linear analysis) for the approximated systems. Despite the potential bias introduced in the approximation process, the analytical approach provides rich insights valuable for evaluating and managing the performance of large-scale dynamical systems under uncertainty. When a system’s complexity and scale are beyond tractable analysis, the effective simulation approach becomes very useful. The effective simulation approach aims to use a few smartly selected simulations to quickly evaluate a complex system’s statistical performance. This approach was originally developed ...
Contributing Partner: UNT Libraries
A Computational Methodology for Addressing Differentiated Access of Vulnerable Populations During Biological Emergencies

A Computational Methodology for Addressing Differentiated Access of Vulnerable Populations During Biological Emergencies

Date: August 2014
Creator: O’Neill II, Martin Joseph
Description: Mitigation response plans must be created to protect affected populations during biological emergencies resulting from the release of harmful biochemical substances. Medical countermeasures have been stockpiled by the federal government for such emergencies. However, it is the responsibility of local governments to maintain solid, functional plans to apply these countermeasures to the entire target population within short, mandated time frames. Further, vulnerabilities in the population may serve as barriers preventing certain individuals from participating in mitigation activities. Therefore, functional response plans must be capable of reaching vulnerable populations.Transportation vulnerability results from lack of access to transportation. Transportation vulnerable populations located too far from mitigation resources are at-risk of not being able to participate in mitigation activities. Quantification of these populations requires the development of computational methods to integrate spatial demographic data and transportation resource data from disparate sources into the context of planned mitigation efforts. Research described in this dissertation focuses on quantifying transportation vulnerable populations and maximizing participation in response efforts. Algorithms developed as part of this research are integrated into a computational framework to promote a transition from research and development to deployment and use by biological emergency planners.
Contributing Partner: UNT Libraries
General Purpose Computing in Gpu - a Watermarking Case Study

General Purpose Computing in Gpu - a Watermarking Case Study

Date: August 2014
Creator: Hanson, Anthony
Description: The purpose of this project is to explore the GPU for general purpose computing. The GPU is a massively parallel computing device that has a high-throughput, exhibits high arithmetic intensity, has a large market presence, and with the increasing computation power being added to it each year through innovations, the GPU is a perfect candidate to complement the CPU in performing computations. The GPU follows the single instruction multiple data (SIMD) model for applying operations on its data. This model allows the GPU to be very useful for assisting the CPU in performing computations on data that is highly parallel in nature. The compute unified device architecture (CUDA) is a parallel computing and programming platform for NVIDIA GPUs. The main focus of this project is to show the power, speed, and performance of a CUDA-enabled GPU for digital video watermark insertion in the H.264 video compression domain. Digital video watermarking in general is a highly computationally intensive process that is strongly dependent on the video compression format in place. The H.264/MPEG-4 AVC video compression format has high compression efficiency at the expense of having high computational complexity and leaving little room for an imperceptible watermark to be inserted. Employing a ...
Contributing Partner: UNT Libraries
Modeling Epidemics on Structured Populations: Effects of Socio-demographic Characteristics and Immune Response Quality

Modeling Epidemics on Structured Populations: Effects of Socio-demographic Characteristics and Immune Response Quality

Date: August 2014
Creator: Reyes Silveyra, Jorge A.
Description: Epidemiologists engage in the study of the distribution and determinants of health-related states or events in human populations. Eventually, they will apply that study to prevent and control problems and contingencies associated with the health of the population. Due to the spread of new pathogens and the emergence of new bio-terrorism threats, it has become imperative to develop new and expand existing techniques to equip public health providers with robust tools to predict and control health-related crises. In this dissertation, I explore the effects caused in the disease dynamics by the differences in individuals’ physiology and social/behavioral characteristics. Multiple computational and mathematical models were developed to quantify the effect of those factors on spatial and temporal variations of the disease epidemics. I developed statistical methods to measure the effects caused in the outbreak dynamics by the incorporation of heterogeneous demographics and social interactions to the individuals of the population. Specifically, I studied the relationship between demographics and the physiological characteristics of an individual when preparing for an infectious disease epidemic.
Contributing Partner: UNT Libraries
Procedural Generation of Content for Online Role Playing Games

Procedural Generation of Content for Online Role Playing Games

Date: August 2014
Creator: Doran, Jonathon
Description: Video game players demand a volume of content far in excess of the ability of game designers to create it. For example, a single quest might take a week to develop and test, which means that companies such as Blizzard are spending millions of dollars each month on new content for their games. As a result, both players and developers are frustrated with the inability to meet the demand for new content. By generating content on-demand, it is possible to create custom content for each player based on player preferences. It is also possible to make use of the current world state during generation, something which cannot be done with current techniques. Using developers to create rules and assets for a content generator instead of creating content directly will lower development costs as well as reduce the development time for new game content to seconds rather than days. This work is part of the field of computational creativity, and involves the use of computers to create aesthetically pleasing game content, such as terrain, characters, and quests. I demonstrate agent-based terrain generation, and economic modeling of game spaces. I also demonstrate the autonomous generation of quests for online role playing games, ...
Contributing Partner: UNT Libraries
Secure and Energy Efficient Execution Frameworks Using Virtualization and Light-weight Cryptographic Components

Secure and Energy Efficient Execution Frameworks Using Virtualization and Light-weight Cryptographic Components

Date: August 2014
Creator: Nimgaonkar, Satyajeet
Description: Security is a primary concern in this era of pervasive computing. Hardware based security mechanisms facilitate the construction of trustworthy secure systems; however, existing hardware security approaches require modifications to the micro-architecture of the processor and such changes are extremely time consuming and expensive to test and implement. Additionally, they incorporate cryptographic security mechanisms that are computationally intensive and account for excessive energy consumption, which significantly degrades the performance of the system. In this dissertation, I explore the domain of hardware based security approaches with an objective to overcome the issues that impede their usability. I have proposed viable solutions to successfully test and implement hardware security mechanisms in real world computing systems. Moreover, with an emphasis on cryptographic memory integrity verification technique and embedded systems as the target application, I have presented energy efficient architectures that considerably reduce the energy consumption of the security mechanisms, thereby improving the performance of the system. The detailed simulation results show that the average energy savings are in the range of 36% to 99% during the memory integrity verification phase, whereas the total power savings of the entire embedded processor are approximately 57%.
Contributing Partner: UNT Libraries
Autonomic Failure Identification and Diagnosis for Building Dependable Cloud Computing Systems

Autonomic Failure Identification and Diagnosis for Building Dependable Cloud Computing Systems

Date: May 2014
Creator: Guan, Qiang
Description: The increasingly popular cloud-computing paradigm provides on-demand access to computing and storage with the appearance of unlimited resources. Users are given access to a variety of data and software utilities to manage their work. Users rent virtual resources and pay for only what they use. In spite of the many benefits that cloud computing promises, the lack of dependability in shared virtualized infrastructures is a major obstacle for its wider adoption, especially for mission-critical applications. Virtualization and multi-tenancy increase system complexity and dynamicity. They introduce new sources of failure degrading the dependability of cloud computing systems. To assure cloud dependability, in my dissertation research, I develop autonomic failure identification and diagnosis techniques that are crucial for understanding emergent, cloud-wide phenomena and self-managing resource burdens for cloud availability and productivity enhancement. We study the runtime cloud performance data collected from a cloud test-bed and by using traces from production cloud systems. We define cloud signatures including those metrics that are most relevant to failure instances. We exploit profiled cloud performance data in both time and frequency domain to identify anomalous cloud behaviors and leverage cloud metric subspace analysis to automate the diagnosis of observed failures. We implement a prototype of the ...
Contributing Partner: UNT Libraries
Ddos Defense Against Botnets in the Mobile Cloud

Ddos Defense Against Botnets in the Mobile Cloud

Date: May 2014
Creator: Jensen, David
Description: Mobile phone advancements and ubiquitous internet connectivity are resulting in ever expanding possibilities in the application of smart phones. Users of mobile phones are now capable of hosting server applications from their personal devices. Whether providing services individually or in an ad hoc network setting the devices are currently not configured for defending against distributed denial of service (DDoS) attacks. These attacks, often launched from a botnet, have existed in the space of personal computing for decades but recently have begun showing up on mobile devices. Research is done first into the required steps to develop a potential botnet on the Android platform. This includes testing for the amount of malicious traffic an Android phone would be capable of generating for a DDoS attack. On the other end of the spectrum is the need of mobile devices running networked applications to develop security against DDoS attacks. For this mobile, phones are setup, with web servers running Apache to simulate users running internet connected applications for either local ad hoc networks or serving to the internet. Testing is done for the viability of using commonly available modules developed for Apache and intended for servers as well as finding baseline capabilities of ...
Contributing Partner: UNT Libraries
Geostatistical Inspired Metamodeling and Optimization of Nanoscale Analog Circuits

Geostatistical Inspired Metamodeling and Optimization of Nanoscale Analog Circuits

Date: May 2014
Creator: Okobiah, Oghenekarho
Description: The current trend towards miniaturization of modern consumer electronic devices significantly affects their design. The demand for efficient all-in-one appliances leads to smaller, yet more complex and powerful nanoelectronic devices. The increasing complexity in the design of such nanoscale Analog/Mixed-Signal Systems-on-Chip (AMS-SoCs) presents difficult challenges to designers. One promising design method used to mitigate the burden of this design effort is the use of metamodeling (surrogate) modeling techniques. Their use significantly reduces the time for computer simulation and design space exploration and optimization. This dissertation addresses several issues of metamodeling based nanoelectronic based AMS design exploration. A surrogate modeling technique which uses geostatistical based Kriging prediction methods in creating metamodels is proposed. Kriging prediction techniques take into account the correlation effects between input parameters for performance point prediction. We propose the use of Kriging to utilize this property for the accurate modeling of process variation effects of designs in the deep nanometer region. Different Kriging methods have been explored for this work such as simple and ordinary Kriging. We also propose another metamodeling technique Kriging-Bootstrapped Neural Network that combines the accuracy and process variation awareness of Kriging with artificial neural network models for ultra-fast and accurate process aware metamodeling design. ...
Contributing Partner: UNT Libraries
Monitoring Dengue Outbreaks Using Online Data

Monitoring Dengue Outbreaks Using Online Data

Date: May 2014
Creator: Chartree, Jedsada
Description: Internet technology has affected humans' lives in many disciplines. The search engine is one of the most important Internet tools in that it allows people to search for what they want. Search queries entered in a web search engine can be used to predict dengue incidence. This vector borne disease causes severe illness and kills a large number of people every year. This dissertation utilizes the capabilities of search queries related to dengue and climate to forecast the number of dengue cases. Several machine learning techniques are applied for data analysis, including Multiple Linear Regression, Artificial Neural Networks, and the Seasonal Autoregressive Integrated Moving Average. Predictive models produced from these machine learning methods are measured for their performance to find which technique generates the best model for dengue prediction. The results of experiments presented in this dissertation indicate that search query data related to dengue and climate can be used to forecast the number of dengue cases. The performance measurement of predictive models shows that Artificial Neural Networks outperform the others. These results will help public health officials in planning to deal with the outbreaks.
Contributing Partner: UNT Libraries
Performance Engineering of Software Web Services and Distributed Software Systems

Performance Engineering of Software Web Services and Distributed Software Systems

Date: May 2014
Creator: Lin, Chia-en
Description: The promise of service oriented computing, and the availability of Web services promote the delivery and creation of new services based on existing services, in order to meet new demands and new markets. As Web and internet based services move into Clouds, inter-dependency of services and their complexity will increase substantially. There are standards and frameworks for specifying and composing Web Services based on functional properties. However, mechanisms to individually address non-functional properties of services and their compositions have not been well established. Furthermore, the Cloud ontology depicts service layers from a high-level, such as Application and Software, to a low-level, such as Infrastructure and Platform. Each component that resides in one layer can be useful to another layer as a service. It hints at the amount of complexity resulting from not only horizontal but also vertical integrations in building and deploying a composite service. To meet the requirements and facilitate using Web services, we first propose a WSDL extension to permit specification of non-functional or Quality of Service (QoS) properties. On top of the foundation, the QoS-aware framework is established to adapt publicly available tools for Web services, augmented by ontology management tools, along with tools for performance modeling ...
Contributing Partner: UNT Libraries
Boosting for Learning From Imbalanced, Multiclass Data Sets

Boosting for Learning From Imbalanced, Multiclass Data Sets

Access: Use of this item is restricted to the UNT Community.
Date: December 2013
Creator: Abouelenien, Mohamed
Description: In many real-world applications, it is common to have uneven number of examples among multiple classes. The data imbalance, however, usually complicates the learning process, especially for the minority classes, and results in deteriorated performance. Boosting methods were proposed to handle the imbalance problem. These methods need elongated training time and require diversity among the classifiers of the ensemble to achieve improved performance. Additionally, extending the boosting method to handle multi-class data sets is not straightforward. Examples of applications that suffer from imbalanced multi-class data can be found in face recognition, where tens of classes exist, and in capsule endoscopy, which suffers massive imbalance between the classes. This dissertation introduces RegBoost, a new boosting framework to address the imbalanced, multi-class problems. This method applies a weighted stratified sampling technique and incorporates a regularization term that accommodates multi-class data sets and automatically determines the error bound of each base classifier. The regularization parameter penalizes the classifier when it misclassifies instances that were correctly classified in the previous iteration. The parameter additionally reduces the bias towards majority classes. Experiments are conducted using 12 diverse data sets with moderate to high imbalance ratios. The results demonstrate superior performance of the proposed method compared ...
Contributing Partner: UNT Libraries
Design and Analysis of Novel Verifiable Voting Schemes

Design and Analysis of Novel Verifiable Voting Schemes

Date: December 2013
Creator: Yestekov, Yernat
Description: Free and fair elections are the basis for democracy, but conducting elections is not an easy task. Different groups of people are trying to influence the outcome of the election in their favor using the range of methods, from campaigning for a particular candidate to well-financed lobbying. Often the stakes are too high, and the methods are illegal. Two main properties of any voting scheme are the privacy of a voter’s choice and the integrity of the tally. Unfortunately, they are mutually exclusive. Integrity requires making elections transparent and auditable, but at the same time, we must preserve a voter’s privacy. It is always a trade-off between these two requirements. Current voting schemes favor privacy over auditability, and thus, they are vulnerable to voting fraud. I propose two novel voting systems that can achieve both privacy and verifiability. The first protocol is based on cryptographical primitives to ensure the integrity of the final tally and privacy of the voter. The second protocol is a simple paper-based voting scheme that achieves almost the same level of security without usage of cryptography.
Contributing Partner: UNT Libraries
Simulating the Spread of Infectious Diseases in Heterogeneous Populations with Diverse Interactions Characteristics

Simulating the Spread of Infectious Diseases in Heterogeneous Populations with Diverse Interactions Characteristics

Date: December 2013
Creator: Gomez-Lopez, Iris Nelly
Description: The spread of infectious diseases has been a public concern throughout human history. Historic recorded data has reported the severity of infectious disease epidemics in different ages. Ancient Greek physician Hippocrates was the first to analyze the correlation between diseases and their environment. Nowadays, health authorities are in charge of planning strategies that guarantee the welfare of citizens. The simulation of contagion scenarios contributes to the understanding of the epidemic behavior of diseases. Computational models facilitate the study of epidemics by integrating disease and population data to the simulation. The use of detailed demographic and geographic characteristics allows researchers to construct complex models that better resemble reality and the integration of these attributes permits us to understand the rules of interaction. The interaction of individuals with similar characteristics forms synthetic structures that depict clusters of interaction. The synthetic environments facilitate the study of the spread of infectious diseases in diverse scenarios. The characteristics of the population and the disease concurrently affect the local and global epidemic progression. Every cluster’ epidemic behavior constitutes the global epidemic for a clustered population. By understanding the correlation between structured populations and the spread of a disease, current dissertation research makes possible to identify risk ...
Contributing Partner: UNT Libraries