You limited your search to:

  Partner: UNT Libraries
 Department: Department of Computer Science and Engineering
 Collection: UNT Theses and Dissertations
A Global Stochastic Modeling Framework to Simulate and Visualize Epidemics

A Global Stochastic Modeling Framework to Simulate and Visualize Epidemics

Date: May 2012
Creator: Indrakanti, Saratchandra
Description: Epidemics have caused major human and monetary losses through the course of human civilization. It is very important that epidemiologists and public health personnel are prepared to handle an impending infectious disease outbreak. the ever-changing demographics, evolving infrastructural resources of geographic regions, emerging and re-emerging diseases, compel the use of simulation to predict disease dynamics. By the means of simulation, public health personnel and epidemiologists can predict the disease dynamics, population groups at risk and their geographic locations beforehand, so that they are prepared to respond in case of an epidemic outbreak. As a consequence of the large numbers of individuals and inter-personal interactions involved in simulating infectious disease spread in a region such as a county, sizeable amounts of data may be produced that have to be analyzed. Methods to visualize this data would be effective in facilitating people from diverse disciplines understand and analyze the simulation. This thesis proposes a framework to simulate and visualize the spread of an infectious disease in a population of a region such as a county. As real-world populations have a non-homogeneous demographic and spatial distribution, this framework models the spread of an infectious disease based on population of and geographic distance between ...
Contributing Partner: UNT Libraries
GPS CaPPture: a System for GPS Trajectory Collection, Processing, and Destination Prediction

GPS CaPPture: a System for GPS Trajectory Collection, Processing, and Destination Prediction

Date: May 2012
Creator: Griffin, Terry W.
Description: In the United States, smartphone ownership surpassed 69.5 million in February 2011 with a large portion of those users (20%) downloading applications (apps) that enhance the usability of a device by adding additional functionality. a large percentage of apps are written specifically to utilize the geographical position of a mobile device. One of the prime factors in developing location prediction models is the use of historical data to train such a model. with larger sets of training data, prediction algorithms become more accurate; however, the use of historical data can quickly become a downfall if the GPS stream is not collected or processed correctly. Inaccurate or incomplete or even improperly interpreted historical data can lead to the inability to develop accurately performing prediction algorithms. As GPS chipsets become the standard in the ever increasing number of mobile devices, the opportunity for the collection of GPS data increases remarkably. the goal of this study is to build a comprehensive system that addresses the following challenges: (1) collection of GPS data streams in a manner such that the data is highly usable and has a reduction in errors; (2) processing and reduction of the collected data in order to prepare it and ...
Contributing Partner: UNT Libraries
Incremental Learning with Large Datasets

Incremental Learning with Large Datasets

Date: May 2012
Creator: Giritharan, Balathasan
Description: This dissertation focuses on the novel learning strategy based on geometric support vector machines to address the difficulties of processing immense data set. Support vector machines find the hyper-plane that maximizes the margin between two classes, and the decision boundary is represented with a few training samples it becomes a favorable choice for incremental learning. The dissertation presents a novel method Geometric Incremental Support Vector Machines (GISVMs) to address both efficiency and accuracy issues in handling massive data sets. In GISVM, skin of convex hulls is defined and an efficient method is designed to find the best skin approximation given available examples. The set of extreme points are found by recursively searching along the direction defined by a pair of known extreme points. By identifying the skin of the convex hulls, the incremental learning will only employ a much smaller number of samples with comparable or even better accuracy. When additional samples are provided, they will be used together with the skin of the convex hull constructed from previous dataset. This results in a small number of instances used in incremental steps of the training process. Based on the experimental results with synthetic data sets, public benchmark data sets from ...
Contributing Partner: UNT Libraries
Metamodeling-based Fast Optimization of  Nanoscale Ams-socs

Metamodeling-based Fast Optimization of Nanoscale Ams-socs

Date: May 2012
Creator: Garitselov, Oleg
Description: Modern consumer electronic systems are mostly based on analog and digital circuits and are designed as analog/mixed-signal systems on chip (AMS-SoCs). the integration of analog and digital circuits on the same die makes the system cost effective. in AMS-SoCs, analog and mixed-signal portions have not traditionally received much attention due to their complexity. As the fabrication technology advances, the simulation times for AMS-SoC circuits become more complex and take significant amounts of time. the time allocated for the circuit design and optimization creates a need to reduce the simulation time. the time constraints placed on designers are imposed by the ever-shortening time to market and non-recurrent cost of the chip. This dissertation proposes the use of a novel method, called metamodeling, and intelligent optimization algorithms to reduce the design time. Metamodel-based ultra-fast design flows are proposed and investigated. Metamodel creation is a one time process and relies on fast sampling through accurate parasitic-aware simulations. One of the targets of this dissertation is to minimize the sample size while retaining the accuracy of the model. in order to achieve this goal, different statistical sampling techniques are explored and applied to various AMS-SoC circuits. Also, different metamodel functions are explored for their ...
Contributing Partner: UNT Libraries
Rapid Prototyping and Design of a Fast Random Number Generator

Rapid Prototyping and Design of a Fast Random Number Generator

Date: May 2012
Creator: Franco, Juan
Description: Information in the form of online multimedia, bank accounts, or password usage for diverse applications needs some form of security. the core feature of many security systems is the generation of true random or pseudorandom numbers. Hence reliable generators of such numbers are indispensable. the fundamental hurdle is that digital computers cannot generate truly random numbers because the states and transitions of digital systems are well understood and predictable. Nothing in a digital computer happens truly randomly. Digital computers are sequential machines that perform a current state and move to the next state in a deterministic fashion. to generate any secure hash or encrypted word a random number is needed. But since computers are not random, random sequences are commonly used. Random sequences are algorithms that generate a pattern of values that appear to be random but after some time start repeating. This thesis implements a digital random number generator using MATLAB, FGPA prototyping, and custom silicon design. This random number generator is able to use a truly random CMOS source to generate the random number. Statistical benchmarks are used to test the results and to show that the design works. Thus the proposed random number generator will be useful ...
Contributing Partner: UNT Libraries
Automatic Tagging of Communication Data

Automatic Tagging of Communication Data

Date: August 2012
Creator: Hoyt, Matthew Ray
Description: Globally distributed software teams are widespread throughout industry. But finding reliable methods that can properly assess a team's activities is a real challenge. Methods such as surveys and manual coding of activities are too time consuming and are often unreliable. Recent advances in information retrieval and linguistics, however, suggest that automated and/or semi-automated text classification algorithms could be an effective way of finding differences in the communication patterns among individuals and groups. Communication among group members is frequent and generates a significant amount of data. Thus having a web-based tool that can automatically analyze the communication patterns among global software teams could lead to a better understanding of group performance. The goal of this thesis, therefore, is to compare automatic and semi-automatic measures of communication and evaluate their effectiveness in classifying different types of group activities that occur within a global software development project. In order to achieve this goal, we developed a web-based component that can be used to help clean and classify communication activities. The component was then used to compare different automated text classification techniques on various group activities to determine their effectiveness in correctly classifying data from a global software development team project.
Contributing Partner: UNT Libraries
Multi-perspective, Multi-modal Image Registration and Fusion

Multi-perspective, Multi-modal Image Registration and Fusion

Date: August 2012
Creator: Belkhouche, Mohammed Yassine
Description: Multi-modal image fusion is an active research area with many civilian and military applications. Fusion is defined as strategic combination of information collected by various sensors from different locations or different types in order to obtain a better understanding of an observed scene or situation. Fusion of multi-modal images cannot be completed unless these two modalities are spatially aligned. In this research, I consider two important problems. Multi-modal, multi-perspective image registration and decision level fusion of multi-modal images. In particular, LiDAR and visual imagery. Multi-modal image registration is a difficult task due to the different semantic interpretation of features extracted from each modality. This problem is decoupled into three sub-problems. The first step is identification and extraction of common features. The second step is the determination of corresponding points. The third step consists of determining the registration transformation parameters. Traditional registration methods use low level features such as lines and corners. Using these features require an extensive optimization search in order to determine the corresponding points. Many methods use global positioning systems (GPS), and a calibrated camera in order to obtain an initial estimate of the camera parameters. The advantages of our work over the previous works are the following. ...
Contributing Partner: UNT Libraries
Sentence Similarity Analysis with Applications in Automatic Short Answer Grading

Sentence Similarity Analysis with Applications in Automatic Short Answer Grading

Date: August 2012
Creator: Mohler, Michael A.G.
Description: In this dissertation, I explore unsupervised techniques for the task of automatic short answer grading. I compare a number of knowledge-based and corpus-based measures of text similarity, evaluate the effect of domain and size on the corpus-based measures, and also introduce a novel technique to improve the performance of the system by integrating automatic feedback from the student answers. I continue to combine graph alignment features with lexical semantic similarity measures and employ machine learning techniques to show that grade assignment error can be reduced compared to a system that considers only lexical semantic measures of similarity. I also detail a preliminary attempt to align the dependency graphs of student and instructor answers in order to utilize a structural component that is necessary to simulate human-level grading of student answers. I further explore the utility of these techniques to several related tasks in natural language processing including the detection of text similarity, paraphrase, and textual entailment.
Contributing Partner: UNT Libraries
A Smooth-turn Mobility Model for Airborne Networks

A Smooth-turn Mobility Model for Airborne Networks

Date: August 2012
Creator: He, Dayin
Description: In this article, I introduce a novel airborne network mobility model, called the Smooth Turn Mobility Model, that captures the correlation of acceleration for airborne vehicles across time and spatial coordinates. E?ective routing in airborne networks (ANs) relies on suitable mobility models that capture the random movement pattern of airborne vehicles. As airborne vehicles cannot make sharp turns as easily as ground vehicles do, the widely used mobility models for Mobile Ad Hoc Networks such as Random Waypoint and Random Direction models fail. Our model is realistic in capturing the tendency of airborne vehicles toward making straight trajectory and smooth turns with large radius, and whereas is simple enough for tractable connectivity analysis and routing design.
Contributing Partner: UNT Libraries
Automated Classification of Emotions Using Song Lyrics

Automated Classification of Emotions Using Song Lyrics

Date: December 2012
Creator: Schellenberg, Rajitha
Description: This thesis explores the classification of emotions in song lyrics, using automatic approaches applied to a novel corpus of 100 popular songs. I use crowd sourcing via Amazon Mechanical Turk to collect line-level emotions annotations for this collection of song lyrics. I then build classifiers that rely on textual features to automatically identify the presence of one or more of the following six Ekman emotions: anger, disgust, fear, joy, sadness and surprise. I compare different classification systems and evaluate the performance of the automatic systems against the manual annotations. I also introduce a system that uses data collected from the social network Twitter. I use the Twitter API to collect a large corpus of tweets manually labeled by their authors for one of the six emotions of interest. I then compare the classification of emotions obtained when training on data automatically collected from Twitter versus data obtained through crowd sourced annotations.
Contributing Partner: UNT Libraries
Modeling Synergistic Relationships Between Words and Images

Modeling Synergistic Relationships Between Words and Images

Date: December 2012
Creator: Leong, Chee Wee
Description: Texts and images provide alternative, yet orthogonal views of the same underlying cognitive concept. By uncovering synergistic, semantic relationships that exist between words and images, I am working to develop novel techniques that can help improve tasks in natural language processing, as well as effective models for text-to-image synthesis, image retrieval, and automatic image annotation. Specifically, in my dissertation, I will explore the interoperability of features between language and vision tasks. In the first part, I will show how it is possible to apply features generated using evidence gathered from text corpora to solve the image annotation problem in computer vision, without the use of any visual information. In the second part, I will address research in the reverse direction, and show how visual cues can be used to improve tasks in natural language processing. Importantly, I propose a novel metric to estimate the similarity of words by comparing the visual similarity of concepts invoked by these words, and show that it can be used further to advance the state-of-the-art methods that employ corpus-based and knowledge-based semantic similarity measures. Finally, I attempt to construct a joint semantic space connecting words with images, and synthesize an evaluation framework to quantify cross-modal ...
Contributing Partner: UNT Libraries
Source and Channel Coding Strategies for Wireless Sensor Networks

Source and Channel Coding Strategies for Wireless Sensor Networks

Date: December 2012
Creator: Li, Li
Description: In this dissertation, I focus on source coding techniques as well as channel coding techniques. I addressed the challenges in WSN by developing (1) a new source coding strategy for erasure channels that has better distortion performance compared to MDC; (2) a new cooperative channel coding strategy for multiple access channels that has better channel outage performances compared to MIMO; (3) a new source-channel cooperation strategy to accomplish source-to-fusion center communication that reduces system distortion and improves outage performance. First, I draw a parallel between the 2x2 MDC scheme and the Alamouti's space time block coding (STBC) scheme and observe the commonality in their mathematical models. This commonality allows us to observe the duality between the two diversity techniques. Making use of this duality, I develop an MDC scheme with pairwise complex correlating transform. Theoretically, I show that MDC scheme results in: 1) complete elimination of the estimation error when only one descriptor is received; 2) greater efficiency in recovering the stronger descriptor (with larger variance) from the weaker descriptor; and 3) improved performance in terms of minimized distortion as the quantization error gets reduced. Experiments are also performed on real images to demonstrate these benefits. Second, I present a ...
Contributing Partner: UNT Libraries
Evaluating Appropriateness of Emg and Flex Sensors for Classifying Hand Gestures

Evaluating Appropriateness of Emg and Flex Sensors for Classifying Hand Gestures

Date: May 2013
Creator: Akumalla, Sarath Chandra
Description: Hand and arm gestures are a great way of communication when you don't want to be heard, quieter and often more reliable than whispering into a radio mike. In recent years hand gesture identification became a major active area of research due its use in various applications. The objective of my work is to develop an integrated sensor system, which will enable tactical squads and SWAT teams to communicate when there is absence of a Line of Sight or in the presence of any obstacles. The gesture set involved in this work is the standardized hand signals for close range engagement operations used by military and SWAT teams. The gesture sets involved in this work are broadly divided into finger movements and arm movements. The core components of the integrated sensor system are: Surface EMG sensors, Flex sensors and accelerometers. Surface EMG is the electrical activity produced by muscle contractions and measured by sensors directly attached to the skin. Bend Sensors use a piezo resistive material to detect the bend. The sensor output is determined by both the angle between the ends of the sensor as well as the flex radius. Accelerometers sense the dynamic acceleration and inclination in 3 ...
Contributing Partner: UNT Libraries
Exploring Memristor Based Analog Design in Simscape

Exploring Memristor Based Analog Design in Simscape

Date: May 2013
Creator: Gautam, Mahesh
Description: With conventional CMOS technologies approaching their scaling limits, researchers are actively investigating alternative technologies for ever increasing computing and mobile demand. A number of different technologies are currently being studied by different research groups. In the last decade, one-dimensional (1D) carbon nanotubes (CNT), graphene, which is a two-dimensional (2D) natural occurring carbon rolled in tubular form, and zero-dimensional (0D) fullerenes have been the subject of intensive research. In 2008, HP Labs announced a ground-breaking fabrication of memristors, the fourth fundamental element postulated by Chua at the University of California, Berkeley in 1971. In the last few years, the memristor has gained a lot of attention from the research community. In-depth studies of the memristor and its analog behavior have convinced the community that it has the potential in future nano-architectures for optimization of high-density memory and neuromorphic computing architectures. The objective of this thesis is to explore memristors for analog and mixed-signal system design using Simscape. This thesis presents a memristor model in the Simscape language. Simscape has been used as it has the potential for modeling large systems. A memristor based programmable oscillator is also presented with simulation results and characterization. In addition, simulation results of different memristor models ...
Contributing Partner: UNT Libraries
Extrapolating Subjectivity Research to Other Languages

Extrapolating Subjectivity Research to Other Languages

Date: May 2013
Creator: Banea, Carmen
Description: Socrates articulated it best, "Speak, so I may see you." Indeed, language represents an invisible probe into the mind. It is the medium through which we express our deepest thoughts, our aspirations, our views, our feelings, our inner reality. From the beginning of artificial intelligence, researchers have sought to impart human like understanding to machines. As much of our language represents a form of self expression, capturing thoughts, beliefs, evaluations, opinions, and emotions which are not available for scrutiny by an outside observer, in the field of natural language, research involving these aspects has crystallized under the name of subjectivity and sentiment analysis. While subjectivity classification labels text as either subjective or objective, sentiment classification further divides subjective text into either positive, negative or neutral. In this thesis, I investigate techniques of generating tools and resources for subjectivity analysis that do not rely on an existing natural language processing infrastructure in a given language. This constraint is motivated by the fact that the vast majority of human languages are scarce from an electronic point of view: they lack basic tools such as part-of-speech taggers, parsers, or basic resources such as electronic text, annotated corpora or lexica. This severely limits the ...
Contributing Partner: UNT Libraries
Finding Meaning in Context Using Graph Algorithms in Mono- and Cross-lingual Settings

Finding Meaning in Context Using Graph Algorithms in Mono- and Cross-lingual Settings

Date: May 2013
Creator: Sinha, Ravi Som
Description: Making computers automatically find the appropriate meaning of words in context is an interesting problem that has proven to be one of the most challenging tasks in natural language processing (NLP). Widespread potential applications of a possible solution to the problem could be envisaged in several NLP tasks such as text simplification, language learning, machine translation, query expansion, information retrieval and text summarization. Ambiguity of words has always been a challenge in these applications, and the traditional endeavor to solve the problem of this ambiguity, namely doing word sense disambiguation using resources like WordNet, has been fraught with debate about the feasibility of the granularity that exists in WordNet senses. The recent trend has therefore been to move away from enforcing any given lexical resource upon automated systems from which to pick potential candidate senses,and to instead encourage them to pick and choose their own resources. Given a sentence with a target ambiguous word, an alternative solution consists of picking potential candidate substitutes for the target, filtering the list of the candidates to a much shorter list using various heuristics, and trying to match these system predictions against a human generated gold standard, with a view to ensuring that the ...
Contributing Partner: UNT Libraries
Layout-accurate Ultra-fast System-level Design Exploration Through Verilog-ams

Layout-accurate Ultra-fast System-level Design Exploration Through Verilog-ams

Date: May 2013
Creator: Zheng, Geng
Description: This research addresses problems in designing analog and mixed-signal (AMS) systems by bridging the gap between system-level and circuit-level simulation by making simulations fast like system-level and accurate like circuit-level. The tools proposed include metamodel integrated Verilog-AMS based design exploration flows. The research involves design centering, metamodel generation flows for creating efficient behavioral models, and Verilog-AMS integration techniques for model realization. The core of the proposed solution is transistor-level and layout-level metamodeling and their incorporation in Verilog-AMS. Metamodeling is used to construct efficient and layout-accurate surrogate models for AMS system building blocks. Verilog-AMS, an AMS hardware description language, is employed to build surrogate model implementations that can be simulated with industrial standard simulators. The case-study circuits and systems include an operational amplifier (OP-AMP), a voltage-controlled oscillator (VCO), a charge-pump phase-locked loop (PLL), and a continuous-time delta-sigma modulator (DSM). The minimum and maximum error rates of the proposed OP-AMP model are 0.11 % and 2.86 %, respectively. The error rates for the PLL lock time and power estimation are 0.7 % and 3.0 %, respectively. The OP-AMP optimization using the proposed approach is ~17000× faster than the transistor-level model based approach. The optimization achieves a ~4× power reduction for the OP-AMP ...
Contributing Partner: UNT Libraries
Modeling Alcohol Consumption Using Blog Data

Modeling Alcohol Consumption Using Blog Data

Date: May 2013
Creator: Koh, Kok Chuan
Description: How do the content and writing style of people who drink alcohol beverages stand out from non-drinkers? How much information can we learn about a person's alcohol consumption behavior by reading text that they have authored? This thesis attempts to extend the methods deployed in authorship attribution and authorship profiling research into the domain of automatically identifying the human action of drinking alcohol beverages. I examine how a psycholinguistics dictionary (the Linguistics Inquiry and Word Count lexicon, developed by James Pennebaker), together with Kenneth Burke's concept of words as symbols of human action, and James Wertsch's concept of mediated action provide a framework for analyzing meaningful data patterns from the content of blogs written by consumers of alcohol beverages. The contributions of this thesis to the research field are twofold. First, I show that it is possible to automatically identify blog posts that have content related to the consumption of alcohol beverages. And second, I provide a framework and tools to model human behavior through text analysis of blog data.
Contributing Partner: UNT Libraries
Optimizing Non-pharmaceutical Interventions Using Multi-coaffiliation Networks

Optimizing Non-pharmaceutical Interventions Using Multi-coaffiliation Networks

Date: May 2013
Creator: Loza, Olivia G.
Description: Computational modeling is of fundamental significance in mapping possible disease spread, and designing strategies for its mitigation. Conventional contact networks implement the simulation of interactions as random occurrences, presenting public health bodies with a difficult trade off between a realistic model granularity and robust design of intervention strategies. Recently, researchers have been investigating the use of agent-based models (ABMs) to embrace the complexity of real world interactions. At the same time, theoretical approaches provide epidemiologists with general optimization models in which demographics are intrinsically simplified. The emerging study of affiliation networks and co-affiliation networks provide an alternative to such trade off. Co-affiliation networks maintain the realism innate to ABMs while reducing the complexity of contact networks into distinctively smaller k-partite graphs, were each partition represent a dimension of the social model. This dissertation studies the optimization of intervention strategies for infectious diseases, mainly distributed in school systems. First, concepts of synthetic populations and affiliation networks are extended to propose a modified algorithm for the synthetic reconstruction of populations. Second, the definition of multi-coaffiliation networks is presented as the main social model in which risk is quantified and evaluated, thereby obtaining vulnerability indications for each school in the system. Finally, maximization ...
Contributing Partner: UNT Libraries
Automated Real-time Objects Detection in Colonoscopy Videos for Quality Measurements

Automated Real-time Objects Detection in Colonoscopy Videos for Quality Measurements

Date: August 2013
Creator: Kumara, Muthukudage Jayantha
Description: The effectiveness of colonoscopy depends on the quality of the inspection of the colon. There was no automated measurement method to evaluate the quality of the inspection. This thesis addresses this issue by investigating an automated post-procedure quality measurement technique and proposing a novel approach automatically deciding a percentage of stool areas in images of digitized colonoscopy video files. It involves the classification of image pixels based on their color features using a new method of planes on RGB (red, green and blue) color space. The limitation of post-procedure quality measurement is that quality measurements are available long after the procedure was done and the patient was released. A better approach is to inform any sub-optimal inspection immediately so that the endoscopist can improve the quality in real-time during the procedure. This thesis also proposes an extension to post-procedure method to detect stool, bite-block, and blood regions in real-time using color features in HSV color space. These three objects play a major role in quality measurements in colonoscopy. The proposed method partitions very large positive examples of each of these objects into a number of groups. These groups are formed by taking intersection of positive examples with a hyper plane. ...
Contributing Partner: UNT Libraries
Detection of Temporal Events and Abnormal Images for Quality Analysis in Endoscopy Videos

Detection of Temporal Events and Abnormal Images for Quality Analysis in Endoscopy Videos

Date: August 2013
Creator: Nawarathna, Ruwan D.
Description: Recent reports suggest that measuring the objective quality is very essential towards the success of colonoscopy. Several quality indicators (i.e. metrics) proposed in recent studies are implemented in software systems that compute real-time quality scores for routine screening colonoscopy. Most quality metrics are derived based on various temporal events occurred during the colonoscopy procedure. The location of the phase boundary between the insertion and the withdrawal phases and the amount of circumferential inspection are two such important temporal events. These two temporal events can be determined by analyzing various camera motions of the colonoscope. This dissertation put forward a novel method to estimate X, Y and Z directional motions of the colonoscope using motion vector templates. Since abnormalities of a WCE or a colonoscopy video can be found in a small number of frames (around 5% out of total frames), it is very helpful if a computer system can decide whether a frame has any mucosal abnormalities. Also, the number of detected abnormal lesions during a procedure is used as a quality indicator. Majority of the existing abnormal detection methods focus on detecting only one type of abnormality or the overall accuracies are somewhat low if the method tries to ...
Contributing Partner: UNT Libraries
Framework for Evaluating Dynamic Memory Allocators Including a New Equivalence Class Based Cache-conscious Allocator

Framework for Evaluating Dynamic Memory Allocators Including a New Equivalence Class Based Cache-conscious Allocator

Date: August 2013
Creator: Janjusic, Tomislav
Description: Software applications’ performance is hindered by a variety of factors, but most notably by the well-known CPU-memory speed gap (often known as the memory wall). This results in the CPU sitting idle waiting for data to be brought from memory to processor caches. The addressing used by caches cause non-uniform accesses to various cache sets. The non-uniformity is due to several reasons, including how different objects are accessed by the code and how the data objects are located in memory. Memory allocators determine where dynamically created objects are placed, thus defining addresses and their mapping to cache locations. It is important to evaluate how different allocators behave with respect to the localities of the created objects. Most allocators use a single attribute, the size, of an object in making allocation decisions. Additional attributes such as the placement with respect to other objects, or specific cache area may lead to better use of cache memories. In this dissertation, we proposed and implemented a framework that allows for the development and evaluation of new memory allocation techniques. At the root of the framework is a memory tracing tool called Gleipnir, which provides very detailed information about every memory access, and relates it ...
Contributing Partner: UNT Libraries
Modeling and Analysis of Next Generation 9-1-1 Emergency Medical Dispatch Protocols

Modeling and Analysis of Next Generation 9-1-1 Emergency Medical Dispatch Protocols

Date: August 2013
Creator: Gupta, Neeraj Kant
Description: Emergency Medical Dispatch Protocols are guidelines that a 9-1-1 dispatcher uses to evaluate the nature of emergency, resources to send and the nature of help provided to the 9-1-1 caller. The current Dispatch Protocols are based on voice only call. But the Next Generation 9-1-1 (NG9-1-1) architecture will allow multimedia emergency calls. In this thesis I analyze and model the Emergency Medical Dispatch Protocols for NG9-1-1 architecture. I have identified various technical aspects to improve the NG9-1-1 Dispatch Protocols. The devices (smartphone) at the caller end have advanced to a point where they can be used to send and receive video, pictures and text. There are sensors embedded in them that can be used for initial diagnosis of the injured person. There is a need to improve the human computer (smartphone) interface to take advantage of technology so that callers can easily make use of various features available to them. The dispatchers at the 9-1-1 call center can make use of these new protocols to improve the quality and the response time. They will have capability of multiple media streams to interact with the caller and the first responders.The specific contributions in this thesis include developing applications that use smartphone ...
Contributing Partner: UNT Libraries
Multilingual Word Sense Disambiguation Using Wikipedia

Multilingual Word Sense Disambiguation Using Wikipedia

Date: August 2013
Creator: Dandala, Bharath
Description: Ambiguity is inherent to human language. In particular, word sense ambiguity is prevalent in all natural languages, with a large number of the words in any given language carrying more than one meaning. Word sense disambiguation is the task of automatically assigning the most appropriate meaning to a polysemous word within a given context. Generally the problem of resolving ambiguity in literature has revolved around the famous quote “you shall know the meaning of the word by the company it keeps.” In this thesis, we investigate the role of context for resolving ambiguity through three different approaches. Instead of using a predefined monolingual sense inventory such as WordNet, we use a language-independent framework where the word senses and sense-tagged data are derived automatically from Wikipedia. Using Wikipedia as a source of sense-annotations provides the much needed solution for knowledge acquisition bottleneck. In order to evaluate the viability of Wikipedia based sense-annotations, we cast the task of disambiguating polysemous nouns as a monolingual classification task and experimented on lexical samples from four different languages (viz. English, German, Italian and Spanish). The experiments confirm that the Wikipedia based sense annotations are reliable and can be used to construct accurate monolingual sense classifiers. ...
Contributing Partner: UNT Libraries