Search Results

Immune Response of the Rat to Outer Membrane Proteins of Legionella Pneumophila
Outer membrane proteins (OMPs) were recovered from eleven strains (eight serogroups) of Legionella pneumophila by sequential treatment with Tris buffer (pH 8), citrate buffer(pH 2.75) and Tris buffer (pH 8). Transmission electron microscopy revealed clearly the separation of the outer membrane from the bacteria. The development of delayed hypersensitivity was also noted by measuring the area of arythema and induration produced by intradermal injections of the MPSs from Chicago 8 strain. The adjuvants enhanced greatly both active and cell-meditated immunity (CMI). Transient lymphocytopenia with a slight rise in neutrophils was noted in each of the immunized groups. Intraperitoneal challenge, seven days after the OMP booster, of one LD (1.5 x10^6) of legionellae resulted in lymphocytopenia with elevated neutrophils. All immunized rats survived the challenge, although those in the saline-OMP group were clearly the sickest. Post-challenge, legionella antibody titers rose greatly and CMI was heightened. Passive immunization (homologous and heterologous) was found to protect the rats from a challenge of on LD. Actively-immunized rats retained their immunity for at least six months as determined by their resistance to a second challenge.
A Study of the Water-Soluble Antigens from Virulent and Attenuated Biotypes of Brucella abortus
Through chemical analysis and ion exchange chromatography of watersoluble antigens, this investigation supports the view that the majority of differences between the biotypes are quantitative. It was also found that strains demonstrate distinct, qualitative differences when compared to the attenuated strain 19 by immunodiffusion and thin-layer polyacrylamide gel, isoelectric focusing. These differences include the presence of antigens on virulent strains that are absent on strain 19. In addition, one antigen absent on strain 19, was found common to each virulent biotype. Finally, the results from immunodiffusion experiments, employing adsorbed and non-adsorbed immune globulins, indicate that at least some water-soluble antigens are exposed on the cell surface and that their distribution among the biotypes varies.
BioInformatics, Phylogenetics, and Aspartate Transcarbamoylase
In this research, the necessity of understanding and using bioinformatics is demonstrated using the enzyme aspartate transcarbamoylase (ATCase) as the model enzyme. The first portion of this research focuses on the use of bioinformatics. A partial sequence of the pyrB gene found in Enterococcus faecalis was submitted to GenBank and was analyzed against the contiguous sequence from its own genome project. A BLAST (Basic Local Alignment Search Tool; Atschul, et al., 1990) was performed in order to hypothesize the remaining portion of the gene from the contiguous sequence. This allowed a global comparison to other known aspartate transcarbamoylases (ATCases) and once deduced, a translation of the sequence gave the stop codon and thus the complete sequence of the open reading frame. When this was complete, upstream and downstream primers were designed in order to amplify the gene from genomic DNA. The amplified product was then sequenced and used later in phylogenetic analyses concerning the evolution of ATCase. The second portion of this research involves taking multiple ATCase nucleotide sequences and performing phenetic and phylogenetic analyses of the archaea and eubacter families. From these analyses, ancestral relationships which dictate both structure and function were extrapolated from the data and discussed.
Characterization of the Pigment-Protein Complex in Corynebacterium Poinsettiae
The purpose of this study was to completely characterize the protein moiety in the caroteno complex in C. poinsettae, determine if the distribution and level of protein in the pigment-protein complex in membranes of the wild type and in a colorless mutant could account for the differences in the stability of the membrane, and to determine if this protein is common to other pigmented and non-pigmented organisms. Also, electron microscopy of cell membranes of C. poinsettiae which had been exposed to gold-labelled antibody against the protein moitey of the pigment-protein complex, demonstrating that the protein is randomly distributed in the membranes of both wild type and colorless mutant.
Aquatic Heterotrophic Bacteria Active in the Biotransformation of Anthracene and Pentachlorophenol
Dominant genera of bacteria were isolated from three river waters during anthracene and pentachlorophenol biotransformation studies. The genera Pseudomonas, Acinetobacter, Micrococcus, Chromobacterium, Alcaligenes, Azomonos, Bacillus, and Flavobacterium were capable of biotransforming one or both of these compounds. These isolates were subjected to further biotransformation tests, including river water and a basal salt medium with and without additional glucose. The results of these experiments were evaluated statistically. It was concluded that only a limited number of the bacteria identified were able to transform these chemicals in river water. The addition of glucose to the growth medium significantly affected the biotransformation of these chemicals. It was also determined that the size of the initial bacterial population is not a factor in determining whether biotransformation of anthracene or pentachlorophenol can occur.
Carbachol- and ACPD-Induced Phosphoinositide Responses in the Developing Rat Neocortex
Signal transduction via the phosphoinositide (PI) second messenger system has key roles in the development and plasticity of the neocortex. The present study localized PI responses to individual cortical layers in slices of developing rat somatosensory cortex. The acetylcholine agonist carbachol and the glutamate agonist trans-1-amino-1,3-cyclopentanedicarboxylic acid (ACPD) were used to stimulate PI turnover. The PI responses were compared to the distribution of the corresponding PI-linked receptors in order to investigate the regional ontogeny of PI coupling to receptors in relation to neural development. The method for assessing PI turnover was modified from Hwang et al. (1990). This method images the PI response autoradiographically through the localizaton of [3H]cytidine that has been incorporated into the membrane-bound intermediate, cytidine diphosphate diacylglycerol. In each age group (postnatal days 4-30), carbachol resulted in more overall labeling than ACPD. For both agonists, the response peaked on postnatal day 10 (P10) and was lowest in the oldest age group. The laminar distribution of the carbachol PI response from P4-P16 corresponded fairly well with the laminar distribution of [3H]quinuclidinyl benzilate binding (Fuchs, 1995). However, in the subplate layer the carbachol response was strong while receptor binding was minimal. The carbachol response decreased after postnatal day 10, while the overall levels of receptor binding continued to increase. From P5 - P14, PI-linked metabotropic glutamate receptors are most concentrated in layer IV (Blue et al., 1997), whereas only on P6 was there a correspondingly high ACPD-initiated PI response in this layer. Unlike receptors, the PI response was strong in upper V (P4 - P12) and within layers II/III (P8 - P16). From P4 - P21, the subplate showed relatively high PI labeling compared to receptor binding. The several differences between the distribution of PI response and receptors suggest spatiotemporal heterogeneity of receptor coupling to second messenger systems.
Comparative Biochemistry and Evolution of Aspartate Transcarbamoylase from Diverse Bacteria
Aspartate transcarbamoylase (ATCase) catalyzes the first committed step in pyrimidine biosynthesis. Bacterial ATCases are divided into three classes, A, B and C. Class A ATCases are largest at 450-500, are. dodecamers and represented by Pseudomonas ATCase. The overlapping pyrBC' genes encode the Pseudomonases ATCase, which is active only as a 480 kDa dodecamer and requires an inactive pyrC'-encoded DHOase for ATCase activity. ATCase has been studied in two non-pathogenic members of Mycobacterium, M. smegmatis and M. phlei. Their ATCases are dodecamers of molecular weight 480 kDa, composed of six PyrB and six PyrC polypeptides. Unlike the Pseudomonas ATCase, the PyrC polypeptide in these mycobacteria encodes an active DHOase. Moreover, the ATCase: DHOase complex in M. smegmatis is active both as the native 480 kDa and as a 390 kDa complex. The latter lacks two PyrC polypeptides yet retains ATCase activity. The ATCase from M. phlei is similar, except that it is active as the native 480 kDa form but also as 450,410 and 380 kDa forms. These complexes lack one, two, and three PyrC polypeptides, respectively. By contrast,.ATCases from pathogenic mycobacteria are active only at 480 kDa. Mycobacterial ATCases contain active DHOases and accordingly. are placed in class A1 . The class A1 ATCases contain active DHOases while class A2 ATCases contain inactive DHOases. ATCase has also been purified from Burkholderia cepacia and from an E. coli strain in which the cloned pyrB of B. cepacia was expressed. The B. cepacia ATCase has a molecular mass of 550 kDa, with two different polypeptides, PyrB (52 kDa) and PyrC of (39 kDa). The enzyme is active both as the native enzyme at 550 kDa and as smaller molecular forms including 240 kDa and 165 kDa. The ATCase synthesized by the cloned pyrB gene has a molecular weight of 165 kDa composed …
Characterization of the Pigment-Protein and Pigment-ester of Xanthomonas Campestris Pv. Juglandis
The objectives of this project were to develop a high performance liquid chromatographic method for separating the pigment esters mixture, to determine the locations of the pigment moiety in the isolated esters using pholosiphases, and to characterize the pigment-protein complex and determine its distribution in other bacteria. Saponification of the two pigment esters 1 and 2 with aqueous KOH yielded two free pigments on TLC plates developed by two solvent systems. The fasters moving of these two free pigments co-chromatographed with the one free pigment produced from each pigment ester by phospholipase A2 treatment. This suggests that the pigment molecule is a methoxy derivative of xanthomonadin and is esterified to the 2-position of the glycerol moiety of each pigment ester. No free pigment was released from phospholipases C and D treatment of the two pigment esters, indicating that pigment is not esterified to the sorbitol or phosphate moiety of pigment esters 1 or 2.
Induction of Interferon Messenger RNA and Expression of Cellular Oncogenes in Human Lymphoblastoid Cells
The purposes of this study was to demonstrate the induction of alpha interferon mRNA in Sendai virus-induced Namalava cells, to follow the level of alpha interferon mRNA synthesis at the transcriptional level, and to determine whether the Namalava cell line expresses the c-myc oncogene and to what degree. The amount of c-myc message deteted in Namalva cell RNA was about one-tenth that of Daudi cell RNA, whereas no difference in the amount of the c-Ha-ras message was observed between the two cell lines.
The Detection of Poliovirus in Denton Sewage by Immunofluorescence and Immunodiffusion Techniques
Several final sewage effluents from the Denton Disposal Plant were demonstrated to contain Poliovirus types II and III. Pleated encapsulated filters at pH3.5 enhanced the recovery of the Poliovirus at a higher tier in comparison with nitrocellulose filter (Millipore) and glass fiber filter of pore size 0.45u. This thesis explores problems that face us today in our quest to eliminate viral pathogens from the natural and waste water needed for human, domestic, and industrial consumption. Preliminary experiments concern the use of immunofluorescence, and immunodiffusion techniques as a means of poliovirus identification, which invariably suggests that these techniques may be useful as rapid screening procedures of water samples for presence of potentially pathogenic viruses.
Requirements for Cell-Free Cyanide Oxidation by Pseudomonas Fluorescens NCIMB 11764
The involvement of cyanide oxygenase in the metabolism of pyruvate and a-ketoglutarate-cyanohydrin was investigated and shown to occur indirectly by the consumption of free cyanide arising from the cyanohydrins via chemical dissociation. Thus, free cyanide remains the substrate, for which the enzyme displays a remarkably high affinity (Kmapp,4 mM). A model for cyanide utilization is therefore envisioned in which the substrate is initially detoxified by complexation to an appropriate ligand followed by enzymatic oxidation of cyanide arising at sublethal levels via chemical dissociation. Putative cyanide oxygenase in cell extracts consumed both oxygen and NADH in equimolar proportions during cyanide conversion to CO2 and NH3 and existed separately from an unknown heat-stable species responsible for the nonenzymatic cyanide-catalyzed consumption of oxygen. Evidence of cyanide inhibition and nonlinear kinetics between enzyme activity and protein concentration point to a complex mechanism of enzymatic substrate conversion.
Scientific Considerations of Olestra as a Fat Substitute
Olestra is, a sucrose polyester, a noncaloric fat substitute, made from sucrose and several fatty acid esters. It has been approved by the FDA as a food additive used in preparing low-fat deep-frying foods such as savory snacks. Available literature on olestra was evaluated that had both positive and negative connotations. Clinical trials in numerous species of animals including humans were conducted to determine if olestra would affect the utilization and absorption of macro- and micronutrients; the effects of olestra on growth, reproduction, or its toxicity were also examined. The roles of olestra as a fat substitute, how it could effect on humans and the environment, and the potential impacts from its use in large amounts were assessed. Olestra can be removed from the environment by aerobic bacteria and fungi which may be isolated from activated sludge and soils.
Back to Top of Screen