This system will be undergoing maintenance Tuesday, September 30, 2014 from 9:00 AM to 2:00 PM CDT.

  You limited your search to:

  Partner: UNT Libraries
 Department: Department of Computer Science and Engineering
 Degree Discipline: Computer Science and Engineering
 Collection: UNT Theses and Dissertations
Capacity and Throughput Optimization in Multi-cell 3G WCDMA Networks

Capacity and Throughput Optimization in Multi-cell 3G WCDMA Networks

Date: December 2005
Creator: Nguyen, Son
Description: User modeling enables in the computation of the traffic density in a cellular network, which can be used to optimize the placement of base stations and radio network controllers as well as to analyze the performance of resource management algorithms towards meeting the final goal: the calculation and maximization of network capacity and throughput for different data rate services. An analytical model is presented for approximating the user distributions in multi-cell third generation wideband code division multiple access (WCDMA) networks using 2-dimensional Gaussian distributions by determining the means and the standard deviations of the distributions for every cell. This model allows for the calculation of the inter-cell interference and the reverse-link capacity of the network. An analytical model for optimizing capacity in multi-cell WCDMA networks is presented. Capacity is optimized for different spreading factors and for perfect and imperfect power control. Numerical results show that the SIR threshold for the received signals is decreased by 0.5 to 1.5 dB due to the imperfect power control. The results also show that the determined parameters of the 2-dimensional Gaussian model match well with traditional methods for modeling user distribution. A call admission control algorithm is designed that maximizes the throughput in multi-cell ...
Contributing Partner: UNT Libraries
Resource Management in Wireless Networks

Resource Management in Wireless Networks

Date: August 2006
Creator: Arepally, Anurag
Description: A local call admission control (CAC) algorithm for third generation wireless networks was designed and implemented, which allows for the simulation of network throughput for different spreading factors and various mobility scenarios. A global CAC algorithm is also implemented and used as a benchmark since it is inherently optimized; it yields the best possible performance but has an intensive computational complexity. Optimized local CAC algorithm achieves similar performance as global CAC algorithm at a fraction of the computational cost. Design of a dynamic channel assignment algorithm for IEEE 802.11 wireless systems is also presented. Channels are assigned dynamically depending on the minimal interference generated by the neighboring access points on a reference access point. Analysis of dynamic channel assignment algorithm shows an improvement by a factor of 4 over the default settings of having all access points use the same channel, resulting significantly higher network throughput.
Contributing Partner: UNT Libraries
Comparative Study of RSS-Based Collaborative Localization Methods in Wireless Sensor Networks

Comparative Study of RSS-Based Collaborative Localization Methods in Wireless Sensor Networks

Date: December 2006
Creator: Koneru, Avanthi
Description: In this thesis two collaborative localization techniques are studied: multidimensional scaling (MDS) and maximum likelihood estimator (MLE). A synthesis of a new location estimation method through a serial integration of these two techniques, such that an estimate is first obtained using MDS and then MLE is employed to fine-tune the MDS solution, was the subject of this research using various simulation and experimental studies. In the simulations, important issues including the effects of sensor node density, reference node density and different deployment strategies of reference nodes were addressed. In the experimental study, the path loss model of indoor environments is developed by determining the environment-specific parameters from the experimental measurement data. Then, the empirical path loss model is employed in the analysis and simulation study of the performance of collaborative localization techniques.
Contributing Partner: UNT Libraries
Models to Combat Email Spam Botnets and Unwanted Phone Calls

Models to Combat Email Spam Botnets and Unwanted Phone Calls

Date: May 2008
Creator: Husna, Husain
Description: With the amount of email spam received these days it is hard to imagine that spammers act individually. Nowadays, most of the spam emails have been sent from a collection of compromised machines controlled by some spammers. These compromised computers are often called bots, using which the spammers can send massive volume of spam within a short period of time. The motivation of this work is to understand and analyze the behavior of spammers through a large collection of spam mails. My research examined a the data set collected over a 2.5-year period and developed an algorithm which would give the botnet features and then classify them into various groups. Principal component analysis was used to study the association patterns of group of spammers and the individual behavior of a spammer in a given domain. This is based on the features which capture maximum variance of information we have clustered. Presence information is a growing tool towards more efficient communication and providing new services and features within a business setting and much more. The main contribution in my thesis is to propose the willingness estimator that can estimate the callee's willingness without his/her involvement, the model estimates willingness level based ...
Contributing Partner: UNT Libraries
Non-Uniform Grid-Based Coordinated Routing in Wireless Sensor Networks

Non-Uniform Grid-Based Coordinated Routing in Wireless Sensor Networks

Date: August 2008
Creator: Kadiyala, Priyanka
Description: Wireless sensor networks are ad hoc networks of tiny battery powered sensor nodes that can organize themselves to form self-organized networks and collect information regarding temperature, light, and pressure in an area. Though the applications of sensor networks are very promising, sensor nodes are limited in their capability due to many factors. The main limitation of these battery powered nodes is energy. Sensor networks are expected to work for long periods of time once deployed and it becomes important to conserve the battery life of the nodes to extend network lifetime. This work examines non-uniform grid-based routing protocol as an effort to minimize energy consumption in the network and extend network lifetime. The entire test area is divided into non-uniformly shaped grids. Fixed source and sink nodes with unlimited energy are placed in the network. Sensor nodes with full battery life are deployed uniformly and randomly in the field. The source node floods the network with only the coordinator node active in each grid and the other nodes sleeping. The sink node traces the same route back to the source node through the same coordinators. This process continues till a coordinator node runs out of energy, when new coordinator nodes ...
Contributing Partner: UNT Libraries
Variability-aware low-power techniques for nanoscale mixed-signal circuits.

Variability-aware low-power techniques for nanoscale mixed-signal circuits.

Date: May 2009
Creator: Ghai, Dhruva V.
Description: New circuit design techniques that accommodate lower supply voltages necessary for portable systems need to be integrated into the semiconductor intellectual property (IP) core. Systems that once worked at 3.3 V or 2.5 V now need to work at 1.8 V or lower, without causing any performance degradation. Also, the fluctuation of device characteristics caused by process variation in nanometer technologies is seen as design yield loss. The numerous parasitic effects induced by layouts, especially for high-performance and high-speed circuits, pose a problem for IC design. Lack of exact layout information during circuit sizing leads to long design iterations involving time-consuming runs of complex tools. There is a strong need for low-power, high-performance, parasitic-aware and process-variation-tolerant circuit design. This dissertation proposes methodologies and techniques to achieve variability, power, performance, and parasitic-aware circuit designs. Three approaches are proposed: the single iteration automatic approach, the hybrid Monte Carlo and design of experiments (DOE) approach, and the corner-based approach. Widely used mixed-signal circuits such as analog-to-digital converter (ADC), voltage controlled oscillator (VCO), voltage level converter and active pixel sensor (APS) have been designed at nanoscale complementary metal oxide semiconductor (CMOS) and subjected to the proposed methodologies. The effectiveness of the proposed methodologies has ...
Contributing Partner: UNT Libraries
Social Network Simulation and Mining Social Media to Advance Epidemiology

Social Network Simulation and Mining Social Media to Advance Epidemiology

Date: August 2009
Creator: Corley, Courtney David
Description: Traditional Public Health decision-support can benefit from the Web and social media revolution. This dissertation presents approaches to mining social media benefiting public health epidemiology. Through discovery and analysis of trends in Influenza related blogs, a correlation to Centers for Disease Control and Prevention (CDC) influenza-like-illness patient reporting at sentinel health-care providers is verified. A second approach considers personal beliefs of vaccination in social media. A vaccine for human papillomavirus (HPV) was approved by the Food and Drug Administration in May 2006. The virus is present in nearly all cervical cancers and implicated in many throat and oral cancers. Results from automatic sentiment classification of HPV vaccination beliefs are presented which will enable more accurate prediction of the vaccine's population-level impact. Two epidemic models are introduced that embody the intimate social networks related to HPV transmission. Ultimately, aggregating these methodologies with epidemic and social network modeling facilitate effective development of strategies for targeted interventions.
Contributing Partner: UNT Libraries
The Value of Everything: Ranking and Association with Encyclopedic Knowledge

The Value of Everything: Ranking and Association with Encyclopedic Knowledge

Date: December 2009
Creator: Coursey, Kino High
Description: This dissertation describes WikiRank, an unsupervised method of assigning relative values to elements of a broad coverage encyclopedic information source in order to identify those entries that may be relevant to a given piece of text. The valuation given to an entry is based not on textual similarity but instead on the links that associate entries, and an estimation of the expected frequency of visitation that would be given to each entry based on those associations in context. This estimation of relative frequency of visitation is embodied in modifications to the random walk interpretation of the PageRank algorithm. WikiRank is an effective algorithm to support natural language processing applications. It is shown to exceed the performance of previous machine learning algorithms for the task of automatic topic identification, providing results comparable to that of human annotators. Second, WikiRank is found useful for the task of recognizing text-based paraphrases on a semantic level, by comparing the distribution of attention generated by two pieces of text using the encyclopedic resource as a common reference. Finally, WikiRank is shown to have the ability to use its base of encyclopedic knowledge to recognize terms from different ontologies as describing the same thing, and thus ...
Contributing Partner: UNT Libraries
Inferring Social and Internal Context Using a Mobile Phone

Inferring Social and Internal Context Using a Mobile Phone

Date: December 2009
Creator: Phithakkitnukoon, Santi
Description: This dissertation is composed of research studies that contribute to three research areas including social context-aware computing, internal context-aware computing, and human behavioral data mining. In social context-aware computing, four studies are conducted. First, mobile phone user calling behavioral patterns are characterized in forms of randomness level where relationships among them are then identified. Next, a study is conducted to investigate the relationship between the calling behavior and organizational groups. Third, a method is presented to quantitatively define mobile social closeness and social groups, which are then used to identify social group sizes and scaling ratio. Last, based on the mobile social grouping framework, the significant role of social ties in communication patterns is revealed. In internal context-aware computing, two studies are conducted where the notions of internal context are intention and situation. For intentional context, the goal is to sense the intention of the user in placing calls. A model is thus presented for predicting future calls envisaged as a call predicted list (CPL), which makes use of call history to build a probabilistic model of calling behavior. As an incoming call predictor, CPL is a list of numbers/contacts that are the most likely to be the callers within ...
Contributing Partner: UNT Libraries
E‐Shape Analysis

E‐Shape Analysis

Date: December 2009
Creator: Sroufe, Paul
Description: The motivation of this work is to understand E-shape analysis and how it can be applied to various classification tasks. It has a powerful feature to not only look at what information is contained, but rather how that information looks. This new technique gives E-shape analysis the ability to be language independent and to some extent size independent. In this thesis, I present a new mechanism to characterize an email without using content or context called E-shape analysis for email. I explore the applications of the email shape by carrying out a case study; botnet detection and two possible applications: spam filtering and social-context based finger printing. The second part of this thesis takes what I apply E-shape analysis to activity recognition of humans. Using the Android platform and a T-Mobile G1 phone I collect data from the triaxial accelerometer and use it to classify the motion behavior of a subject.
Contributing Partner: UNT Libraries
FIRST PREV 1 2 3 NEXT LAST