Search Results

Biomass-Derived Activated Carbon Through Self-Activation Process
Self-activation is a process that takes advantage of the gases emitted from the pyrolysis process of biomass to activate the converted carbon. The pyrolytic gases from the biomass contain CO2 and H2O, which can be used as activating agents. As two common methods, both of physical activation using CO2 and chemical activation using ZnCl2 introduce additional gas (CO2) or chemical (ZnCl2), in which the CO2 emission from the activation process or the zinc compound removal by acid from the follow-up process will cause environmental concerns. In comparison with these conventional activation processes, the self-activation process could avoid the cost of activating agents and is more environmentally friendly, since the exhaust gases (CO and H2) can be used as fuel or feedstock for the further synthesis in methanol production. In this research, many types of biomass were successfully converted into activated carbon through the self-activation process. An activation model was developed to describe the changes of specific surface area and pore volume during the activation. The relationships between the activating temperature, dwelling time, yield, specific surface area, and specific pore volume were detailed investigated. The highest specific surface area and pore volume of the biomass-derived activated carbon through the self-activation process were up to 2738 m2 g-1 and 2.209 cm3 g-1, respectively. Moreover, the applications of the activated carbons from the self-activation process have been studied, including lithium-ion battery (LIB) manufacturing, water cleaning, oil absorption, and electromagnetic interference (EMI) shielding.
Characterization, Analysis, and Optimization of Rotary Displacer Stirling Engines
This work focuses on an innovative Rotary Displacer SE (RDSE) configuration for Stirling engines (SEs). RDSE features rotary displacers instead of reciprocating displacers (found in conventional SE configurations), as well as combined compression and expansion spaces. Guided by the research question "can RDSE as a novel configuration achieve a higher efficiency compared to conventional SE configurations at comparable operating conditions?", the goal of this study is to characterize, analyze, and optimize RDSE which is pursued in three technical stages. It is observed the RDSE prototype has an optimum phase angle of > 90° and thermal efficiency of 15.5% corresponding to 75.2% of the ideal (Carnot) efficiency at the source and sink temperatures of 98.6° C and 22.1° C, respectively. Initial results indicate that 125° phase angle provides more power than that of the theoretically optimum 90° phase angle. The results also show comparable B_n and significantly higher W_n values (0.047 and 0.465, respectively) compared to earlier studies, and suggest the RDSE could potentially be a competitive alternative to other SE configurations. Furthermore, due to lack of a regenerator, the non-ideal effects calculated in the analytical approach have insignificant impact (less than 0.03 kPa in 100 kPa). The clearance volume in the shuttled volume has a dramatic negative effect and reduces the performance up to 40%. Ultimately, utilizing CFD, it is proved that the existing geometry is relatively optimized where the optimum phase angle is 121° and geometric ratio D\/L for the displacer is 0.49.
Comparative Study of Thermal Comfort Models Using Remote-Location Data for Local Sample Campus Building as a Case Study for Scalable Energy Modeling at Urban Level Using Virtual Information Fabric Infrastructure (VIFI)
The goal of this dissertation is to demonstrate that data from a remotely located building can be utilized for energy modeling of a similar type of building and to demonstrate how to use this remote data without physically moving the data from one server to another using Virtual Information Fabric Infrastructure (VIFI). In order to achieve this goal, firstly an EnergyPlus model was created for Greek Life Center, a campus building located at University of North Texas campus at Denton in Texas, USA. Three thermal comfort models of Fanger model, Pierce two-node model and KSU two-node model were compared in order to find which one of these three models is most accurate to predict occupant thermal comfort. This study shows that Fanger's model is most accurate in predicting thermal comfort. Secondly, an experimental data pertaining to lighting usage and occupancy in a single-occupancy office from Carnegie Mellon University (CMU) has been implemented in order to perform energy analysis of Greek Life Center assuming that occupants in this building's offices behave similarly as occupants in CMU. Thirdly, different data types, data formats and data sources were identified which are required in order to develop a city-scale urban building energy model (CS-UBEM). Two workflows were created, one for an individual scale building energy model and another one for CS-UBEM. A new innovative infrastructure called as Virtual Information Fabric Infrastructure (VIFI) has been introduced in this dissertation. The workflows proposed in this study will demonstrate in the future work that by using VIFI infrastructure to develop building energy models there is a potential of using data for remote servers without actually moving the data. It has been successfully demonstrated in this dissertation that data located at remote location can be used credibly to predict energy consumption of a newly built building. When the …
Design of Bioinspired Conductive Smart Textile
Electrically conductive fabrics are one of the major components of smart textile that attracts a lot of attention by the energy, medical, sports and military industry. The principal contributors to the conductivity of the smart textiles are the intrinsic properties of the fiber, functionalization by the addition of conductive particles and the architecture of fibers. In this study, intrinsic properties of non-woven carbon fabric derived from a novel linear lignin, poly-(caffeyl alcohol) (PCFA) discovered in the seeds of the vanilla orchid (Vanilla planifolia) was investigated. In contrast to all known lignins which comprise of polyaromatic networks, the PCFA lignin is a linear polymer. The non-woven fabric was prepared using electrospinning technique, which follows by stabilization and carbonization steps. Results from Raman spectroscopy indicate higher graphitic structure for PCFA carbon as compared to the Kraft lignin, as seen from G/D ratios of 1.92 vs 1.15 which was supported by a high percentage of graphitic (C-C) bond observed from X-ray photoelectron spectroscopy (XPS). Moreover, from the XRD and TEM a larger crystal size (Lc=12.2 nm) for the PCFA fiber was obtained which correlates to the higher modulus and conductivity of the fiber. These plant-sourced carbon fabrics have a valuable impact on zero carbon footprint materials. In order to improve the strength and flexibility of the non-woven carbon fabric, lignin was blended with the synthetic polymer Poly acrylonitrile (PAN) in different concertation, resulting in electrical conductivity up to (7.7 S/cm) on blend composition which is enough for sensing and EMI shielding applications. Next, the design of experiments approach was used to identify the contribution of the carbonization parameters on the conductivity of the fabrics and architecture of the fibers, results show carbonization temperature as the major contributing factor to the conductivity of non-woven fabric. Finally, a manufacturing procedure was develop inspired by the …
Effectiveness of Fillers for Corrosion Protection of AISI-SAE 1018 Steel in Sea Salt Solution
Corrosion represents the single most frequent cause for product replacement or loss of product functionality with a 5% coat to the industrial revenue generation of any country in this dissertation the efficacy of using filled coatings as a protection coating are investigated. Fillers disrupt the polymer-substrate coating interfacial area and lead to poor adhesion. Conflicting benefits of increasing surface hardness and corrosion with long term durability through loss of adhesion to the substrate are investigated. The effects of filler type, filler concentration and exposure to harsh environments such as supercritical carbon dioxide on salt water corrosion are systematically investigated. The constants maintained in the design of experiments were the substrate, AISI-SAE 1018 steel substrate, and the corrosive fluid synthetic sea salt solution (4.2 wt%) and the polymer, Bismaleimide (BMI). Adhesion strength through pull-off, lap shear and shear peel tests were determined. Corrosion using Tafel plots and electrochemical impedance spectroscopy was conducted. Vickers hardness was used to determine mechanical strength of the coatings. SEM and optical microscopy were used to examine dispersion and coating integrity. A comparison of fillers such as alumina, silica, hexagonal boron nitride, and organophilic montmorillonite clay (OMMT) at different concentrations revealed OMMT to be most effective with the least decrease in adhesion from filler-substrate contact. Subsequently examining filler concentration, a 3 wt% OMMT was found to be most effective. A comparison of unmodified and modified BMI with 3 wt% OMMT exposed and not exposed to supercritical carbon dioxide showed that the BMI provided better corrosion protection; however, OMMT provided better wear, shear, and hardness performance.
Enhanced Coarse-Graining for Multiscale Modeling of Elastomers
One of the major goal of the researchers is to reduce energy loss including nanoscale to the structural level. For instance, around 65% of fuel energy is lost during the propulsion of the automobiles, where 11% of the loss happens at tires due to rolling friction. Out of that tire loss, 90 to 95% loss happens due to hysteresis of tire materials. This dissertation focuses on multiscale modeling techniques in order to facilitate the discovery new rubber materials. Enhanced coarse-grained models of elastomers (thermoplastic polyurethane elastomer and natural rubber) are constructed from full-atomic models with reasonable repeat units/beads associated with pressure-correction for non-bonded interactions of the beads using inverse Boltzmann method (IBM). Equivalent continuum modeling is performed with volumetric/isochoric loading to predict macroscopic mechanical properties using molecular mechanics (MM) and molecular dynamics (MD). Glass-transition and rate-dependent mechanical properties along with hysteresis loss under uniaxial deformation is predicted with varying composition of the material. A statistical non-Gaussian treatment of a rubber chain is performed and linked with molecular dynamics in order predict hyperelastic material constants without fitting with any experimental data.
Heat Transfer in Low Dimensional Materials Characterized by Micro/Nanoscae Thermometry
In this study, the thermal properties of low dimensional materials such as graphene and boron nitride nanotube were investigated. As one of important heat transfer characteristics, interfacial thermal resistance (ITR) between graphene and Cu film was estimated by both experiment and simulation. In order to characterize ITR, the micropipette sensing technique was utilized to measure the temperature profile of suspended and supported graphene on Cu substrate that is subjected to continuous wave laser as a point source heating. By measuring the temperature of suspended graphene, the intrinsic thermal conductivity of suspended graphene was measured and it was used for estimating interfacial thermal resistance between graphene and Cu film. For simulation, a finite element method and a multiparameter fitting technique were employed to find the best fitting parameters. A temperature profile on a supported graphene on Cu was extracted by a finite element method using COMSOL Multiphysics. Then, a multiparameter fitting method using MATLAB software was used to find the best fitting parameters and ITR by comparing experimentally measured temperature profile with simulation one. In order to understand thermal transport between graphene and Cu substrate with different interface distances, the phonon density of states at the interface between graphene and Cu substrate was calculated by MD simulation.As another low dimensional material for thermal management applications, the thermal conductivity of BNNT was measured by nanoscale thermometry. For this work, a noble technique combining a focused ion beam (FIB) and nanomanipulator was employed to pick and to place a single BNNT on the desired location. The FIB technology was used to make nanoheater patterns (so called nanothermometer) on a prefabricated microelectrode device by conventional photolithography processes. With this noble technique and the nanoheater thermometry, the thermal conductivity of BNNT was successfully characterized by temperature gradient and heat flow measurements through BNNT.
Indirect Fabrication of Lattice Metals with Thin Sections Using Centrifugal Casting
There is a wide range of applications for 3D printing technology with an additive manufacturing such as aerospace, automotive, marine and oil/gas, medical, consumer, electronics, building construction, and many others. There have been many pros and cons for 3D additive manufacturing. Even though 3D printing technology has many advantages: freedom to design and innovate without penalties, rapid iteration through design permutations, excellence mass customization, elimination of tolling, green manufacturing, minimal material wastes, energy efficiency, an enablement of personalized manufacturing. 3D additive manufacturing still has many disadvantages: unexpected pre- and post-processing requirement, high-end manufacturing, low speed for mass production, high thermal residual stress, and poor surface finish and dimensional accuracy, and many others. Especially, the issues for 3D additive manufacturing are on high cost for process and equipment for high-end manufacturing, low speed for mass production, high thermal residual stress, and poor surface finish and dimensional accuracy. In particular, it is relatively challenging to produce casting products with lattice or honeycomb shapes having sophisticated geometries. In spite of the scalable potential of periodic cellular metals to structural applications, the manufacturing methods of I∙AM Casting have been not actively explored nor fully understood. A few qualitative studies of I∙AM Casting has been reported. Recently, a sand casting of cellular structures was attempted, resulting in casting porosity and the sharp corners in the lattice structure of the cellular structural molds, a sharpness which prevent fluid-flow and causes undesired solidification, resulting in misrun casting defects. Research on the indirect AM methods has not been aggressively conducted due to the highly complex and multidisciplinary problems across the process – continuum modeling (thermal stress, flow, heat transfer, and water diffusion) with multiple materials (polymer, metals, and ceramic) for multiphase simulations – solid, liquid, and gas. As an initial step to fully understand the processing of I∙AM …
Investigations of the Fresnel Lens Based Solar Concentrator System through a Unique Statistical-Algorithmic Approach
This work investigates the Fresnel-lens-based solar concentrator-receiver system in a multi-perspective manner to design, test and fabricate this concentrator with high-efficiency photon and heat outputs and a minimized effect of chromatic aberrations. First, a MATLAB®-incorporated algorithm optimizes both the flat-spot and the curved lens designs via a statistical ray-tracing methodology of the incident light, considering all of its incidence parameters. The target is to maximize the solar ray intensity on the receiver's aperture, and therefore, achieve the highest possible focal flux. The algorithm outputs prismatic and dimensional geometries of the Fresnel-lens concentrator, which are simulated by COMSOL® Multiphysics to validate the design. For the second part, a novel genetically-themed hierarchical algorithm (GTHA) has been investigated to design Fresnel-lens solar concentrators that match with the distinct energy input and spatial geometry of various thermal applications. Basic heat transfer analysis of each application decides its solar energy requirement. The GTHA incorporated in MATLAB® optimizes the concentrator characteristics to secure this energy demand, balancing a minimized geometry and a maximized efficiency. Two experimental applications were selected from literature to validate the optimization process, a solar welding system for H13 steel plates and a solar Stirling engine with an aluminum-cavity receiver attached to the heater section. In each case, a flat Fresnel-lens with a spot focus was algorithmically designed to supply the desired solar heat, and then a computer simulation of the optimized lens was conducted showing great comparability to the original experimental results. Thirdly, the prismatic geometry of the Fresnel lens was further optimized through a statistical approach that incorporates laws of light refraction and trigonometry. The proposed design produces high focal irradiance that is more suitable for thermal applications. The motivation was to enhance the tolerability of a flat Fresnel-lens concentrator to tracking errors, without the use of secondary optics or sophisticated, …
Piezoelectric-Based Gas Sensors for Harsh Environment Gas Component Monitoring
In this study, gas sensing systems that are based on piezoelectric smart material and structures are proposed, designed, developed, and tested, which are mainly aimed to address the temperature dependent CO2 gas sensing in a real environment. The state-of-the-art of gas sensing technologies are firstly reviewed and discussed for their pros and cons. The adsorption mechanisms including physisorption and chemisorption are subsequently investigated to characterize and provide solutions to various gas sensors. Particularly, a QCM based gas sensor and a C-axis inclined zigzag ZnO FBAR gas sensor are designed and analyzed for their performance on room temperature CO2 gas sensing, which fall into the scope of physisorption. In contrast, a Langasite (LGS) surface acoustic wave (SAW) based acetone vapor sensor is designed, developed, and tested, which is based on the chemisorption analysis of the LGS substrate. Moreover, solid state gas sensors are characterized and analyzed for chemisorption-based sensitive sensing thin film development, which can be further applied to piezoelectric-based gas sensors (i.e. Ca doped ZnO LGS SAW gas sensors) for performance enhanced CO2 gas sensing. Additionally, an innovative MEMS micro cantilever beam is proposed based on the LGS nanofabrication, which can be potentially applied for gas sensing, when combined with ZnO nanorods deposition. Principal component analysis (PCA) is employed for cross-sensitivity analysis, by which high temperature gas sensing in a real environment can be achieved. The proposed gas sensing systems are designated to work in a high temperature environment by taking advantage of the high temperature stability of the piezoelectric substrates.
Programmable Mechanical Metamaterials with Negative Poisson's Ratio and Negative Thermal Expansion
Programmable matter is a material whose properties can be programmed to achieve particular shapes or mechanical properties upon command. This is an essential technique that could one day lead to morphing aircraft and ground vehicles. Metamaterials are the rationally designed artificial materials whose properties are not observed in nature. Their properties are typically controlled by geometry rather than chemical compositions. Combining metamaterials with a programmable function will create a new area in the intelligent material design. The objective of this study is to design and demonstrate a tunable metamaterial and to investigate its thermo-mechanical behavior. An integrated approach to the metamaterial design was used with analytical modeling, numerical simulation, and experimental demonstration. The dynamic thermo-mechanical analysis was used to measure base materials' modulus and thermal expansion coefficient as a function of temperature. CPS, the unit cell of the metamaterial, is composed of circular holes and slits. By decomposing kinematic rotation of the arm and elastic deformation of a bi-material hinge, thermo-mechanical constitutive models of CPS were developed and it was extended to 3D polyhedral structures for securing isotropic properties. Finite element based numerical simulations of CPS and polyhedral models were conducted for comparison with the analytical model. 3D printing of multi-materials was used for sample fabrication followed by tests with uniaxial compressive mechanical tests and thermal tests at 50℃. From the analytical model of the metamaterial, the contour plots were obtained for the effective properties – Poisson's ratio, the effective coefficient of thermal expansion of the metamaterial as a function of geometry and materials. A controllable range of temperature and strain was identified associated with maximized thermal expansion mismatch and contact on the slit surface of CPS, respectively. This work will pave the road toward the design of programmable metamaterials with both mechanically- and thermally- tunable capability and provide unique …
Back to Top of Screen