Search Results

Computational Studies of C-H Bond Activation and Ethylene Polymerization Using Transition Metal Complexes

Description: This work discusses the C-H bond activation by transition metal complexes using various computational methods. First, we performed a DFT study of oxidative addition of methane to Ta(OC2H4)3A (where A may act as an ancillary ligand) to understand how A may affect the propensity of the complex to undergo oxidative addition. Among the A groups studied, they can be a Lewis acid (B or Al), a saturated, electron-precise moiety (CH or SiH), a σ-donor (N), or a σ-donor/π-acid (P). By varying A, we seek… more
Access: Restricted to UNT Community Members. Login required if off-campus.
Date: May 2019
Creator: Parveen, Riffat
Partner: UNT Libraries

Computational Studies of Catalysis Mediated by Transition Metal Complexes

Description: Computational methods were employed to investigate catalytic processes. First, DFT calculations predicted the important geometry metrics of a copper–nitrene complex. MCSCF calculations supported the open-shell singlet state as the ground state of a monomeric copper nitrene, which was consistent with the diamagnetic character deduced from experimental observations. The calculations predicted an elusive terminal copper nitrene intermediate. Second, DFT methods were carried out to investigate the … more
Access: Restricted to UNT Community Members. Login required if off-campus.
Date: May 2019
Creator: Jiang, Quan
Partner: UNT Libraries
open access

Computational Studies of C–H/C–C Manipulation Utilizing Transition Metal Complexes

Description: Density Functional Theory (DFT) is an effective tool for studying diverse metal systems. Presented herein are studies of a variety of metal systems, which can be applied to accomplish transformations that are currently difficult/impossible to achieve. The specific topics studied utilizing DFT include: 1) C–H bond activation via an Earth-abundant transition metal complex, 2) C–H bond deprotonation via an alkali metal superbase, 3) and amination/aziridination reactions utilizing a CuI reagent. Us… more
Date: May 2015
Creator: Pardue, Daniel B.
Partner: UNT Libraries
open access

Computational Study of Small Molecule Activation via Low-Coordinate Late First-Row Transition Metal Complexes

Description: Methane and dinitrogen are abundant precursors to numerous valuable chemicals such as methanol and ammonia, respectively. However, given the robustness of these substrates, catalytically circumventing the high temperatures and pressures required for such transformations has been a challenging task for chemists. In this work, computational studies of various transition metal catalysts for methane C-H activation and N2 activation have been carried out. For methane C-H activation, catalysts of th… more
Date: May 2010
Creator: Pierpont, Aaron
Partner: UNT Libraries

Design, Synthesis and Characterization of Polymer and Protein Coated Hybrid Nanomaterials: Investigation of Prototypes for Antimicrobial and Anticancer Applications

Description: This work involves synthesis and characterization of isotropic and anisotropic noble metal nanoparticles for applications ranging from antimicrobial uses to anticancer applications. These nanomaterials are stabilized in genuinely benign biomaterials ranging from polymers to cross linked proteins for targeted cancer treatments. The nanoparticles are found to have tunable optical properties.
Access: Restricted to UNT Community Members. Login required if off-campus.
Date: May 2019
Creator: Korir, Daniel Kiplangat
Partner: UNT Libraries
open access

Design, Synthesis and Optoelectronic Properties of Monovalent Coinage Metal-Based Functional Materials toward Potential Lighting, Display and Energy-Harvesting Devices

Description: Groundbreaking progress in molecule-based optoelectronic devices for lighting, display and energy-harvesting technologies demands highly efficient and easily processable functional materials with tunable properties governed by their molecular/supramolecular structure variations. To date, functional coordination compounds whose function is governed by non-covalent weak forces (e.g., metallophilic, dπ-acid/dπ-base stacking, halogen/halogen and/or d/π interactions) remain limited. This is unlike t… more
Date: August 2017
Creator: Ghimire, Mukunda Mani
Partner: UNT Libraries
open access

Detection of Harmful Chemicals in the Air using Portable Membrane Inlet Mass Spectrometry

Description: Portable mass spectrometry has become an important analytical tool for chemical detection and identification outside of a lab setting. Many variations and applications have been developed to benefit various fields of science. Membrane inlet mass spectrometry is used to allow certain analytes to pass into the mass spectrometer without breaking vacuum or letting in large particulate matter. These two important analytical tools have been applied to the detection of harmful chemicals in the air. Ea… more
Date: August 2018
Creator: Kretsch, Amanda Renee
Partner: UNT Libraries

Development and Testing of Gold(I) and Europium(III) Based Sensors for Environmental Applications

Description: This dissertation focuses on the development, characterization, and analysis of luminescent materials and coatings for sensing applications, including CO2, heavy metals, and silver. Chapter 2 involves the use of a gold(I) pyrazolate trimer that is able to detect silver ions with an AgNP medium. Detection of silver is vital, because there is an influx of silver into our environment caused by the increased use of AgNP. Therefore, having a sensor that is able to differentiate between and detect on… more
Access: Restricted to UNT Community Members. Login required if off-campus.
Date: May 2019
Creator: Benton, Erin Nicole
Partner: UNT Libraries
open access

Development of an Optical Carbon Dioxide Sensor and Modeling of Metal-Metal Interactions for Sensor Applications

Description: An investigation of luminescent sensing has been presented. Neutral Red, a common pH luminescent sensor, was shown to be an effective carbon dioxide sensor for the first time. Sensing experiments were performed both through fluorometric and fluorescent microscopy studies, giving rise to the possibility of carbon dioxide sensing for biological applications. Neutral Red was benchmarked against the well-established carbon dioxide sensor Pyranine (8-hydroxypyrene-1,3,6-trisulfonic acid trisodium sa… more
Date: December 2019
Creator: Ericson, Megan
Partner: UNT Libraries
open access

Disease Tissue Imaging and Single Cell Analysis with Mass Spectrometry

Description: Cells have been found to have an inherent heterogeneity that has led to an increase in the development of single-cell analysis methods to characterize the extent of heterogeneity that can be found in seemingly identical cells. With an understanding of normal cellular variability, the identification of disease induced cellular changes, known as biomarkers, may become more apparent and readily detectable. Biomarker discovery in single-cells is challenging and needs to focus on molecules that ar… more
Date: May 2017
Creator: Hamilton, Jason S.
Partner: UNT Libraries
open access

Effect of Fluorine and Hydrogen Radical Species on Modified Oxidized Ni(pt)si

Description: NiSi is an attractive material in the production of CMOS devices. The problem with the utilization of NiSi, is that there is no proper method of cleaning the oxide on the surface. Sputtering is the most common method used for the cleaning, but it has its own complications. Dry cleaning methods include the reactions with radicals and these processes are not well understood and are the focus of the project. Dissociated NF3 and NH3 were used as an alternative and XPS is the technique to analyze th… more
Date: May 2010
Creator: Gaddam, Sneha Sen
Partner: UNT Libraries

Electrochemical Deposition of Metal Organic-Modified-Ceramic Nanoparticles to Improve Corrosion and Mechanical Properties

Description: Corrosion is an unstoppable process that occurs spontaneously in many areas of industry, specially, oil and gas industries. Therefore, the need of developing protective coating to lower the cost of corrosion is very consistent. Among different methods, electrodeposition has been a popular method since it offer many advantages such as low cost, ability to control the surface and thickness of the coating, ability to perform at low temperature and pressure, and very convenience. Ceramic nanopartic… more
Access: Restricted to UNT Community Members. Login required if off-campus.
Date: August 2019
Creator: Ngo, Ngan Kim
Partner: UNT Libraries
open access

Electrochemical Deposition of Nickel Nanocomposites in Acidic Solution for Increased Corrosion Resistance

Description: The optimal conditions for deposition of nickel coating and Ni-layered double hydroxide metal matrix composite coatings onto stainless steel discs in a modified all-sulfate solutions have been examined. Nickel films provide good general corrosion resistance and mechanical properties as a protective layer on many metallic substrates. In recent years, there has been interest in incorporation nano-dimensional ceramic materials, such as montemorillonite, into the metal matrices to improve upon the… more
Date: August 2017
Creator: Daugherty, Ryan E.
Partner: UNT Libraries
open access

Electrodeposition of Molybdenum-Based Coatings from Aqueous Alkaline Solutions for Enhanced Corrosion Resistance

Description: Zn-Mo coatings are very promising environment friendly anticorrosive coatings as replacement materials for cadmium and chromium (VI) based conversion layers. Electrodeposition has become a favorable technique in fabricating coatings due to its low cost, ease of use, and overall experimental control of coating quality. Very little research so far has been done for the electrodeposition of Zn-Mo coatings under alkaline conditions. In this work, Zn and Zn-Mo coatings were electrochemically deposit… more
Date: May 2018
Creator: Zhou, Ting
Partner: UNT Libraries
open access

Elucidation of Photoinduced Energy and Electron Transfer Mechanisms in Multimodular Artificial Photosynthetic Systems

Description: Multimodular designs of electron donor-acceptor systems are the ultimate strategy in fabricating antenna-reaction center mimics for artificial photosynthetic applications. The studied photosystems clearly demonstrated efficient energy transfer from the antenna system to the primary electron donor, and charge stabilization of the radical ion pair achieved with the utilization of secondary electron donors that permits either electron migration or hole transfer. Moreover, the molecular arrangement… more
Date: May 2017
Creator: Lim, Gary Lloyd
Partner: UNT Libraries
open access

Exploration of Transition Metal-Containing Catalytic Cycles via Computational Methods

Description: Styrene production by a (FlDAB)PdII(TFA)(η2-C2H4) complex was modeled using density functional theory (DFT). Benzene C-H activation by this complex was studied via five mechanisms: oxidative addition/reductive elimination, sigma-bond metathesis, concerted metalation deprotonation (CMD), CMD activation of ethylene, and benzene substitution of ethylene followed by CMD of the ligated benzene. Calculations provided evidence that conversion of benzene and ethylene to styrene was initiated by the fif… more
Date: May 2019
Creator: Ceylan, Yavuz Selim
Partner: UNT Libraries
open access

High-Energy, Long-Lived Charge-Separated States via Molecular Engineering of Triplet State Donor-Acceptor Systems

Description: Molecular engineering of donor-acceptor dyads and multimodular systems to control the yield and lifetime of charge separation is one of the key goals of artificial photosynthesis for harvesting sustainably solar energy. The design of the donor-acceptor systems mimic a part of green plants and bacterial photosynthetic processes. The photochemical events in natural photosynthesis involve the capturing and funneling of solar energy by a group of well-organized chromophores referred to as an ‘anten… more
Date: August 2018
Creator: Obondi, Christopher O
Partner: UNT Libraries
open access

Investigating Molecular Structures: Rapidly Examining Molecular Fingerprints Through Fast Passage Broadband Fourier Transform Microwave Spectroscopy

Description: Microwave spectroscopy is a gas phase technique typically geared toward measuring the rotational transitions of Molecules. The information contained in this type of spectroscopy pertains to a molecules structure, both geometric and electronic, which give insight into a molecule's chemistry. Typically this type of spectroscopy is high resolution, but narrowband ≤1 MHz in frequency. This is achieved by tuning a cavity, exciting a molecule with electromagnetic radiation in the microwave region, tu… more
Date: May 2011
Creator: Grubbs, Garry Smith, II
Partner: UNT Libraries
open access

Kinetic Investigation of the Gas Phase Atomic Sulfur and Nitrogen Dioxide Reaction

Description: The kinetics of the reaction of atomic sulfur and nitrogen dioxide have been investigated over the temperature range 298 to 650 K and pressures from 14 - 405 mbar using the laser flash photolysis - resonance fluorescence technique. The overall bimolecular rate expression k (T) = (1.88 ± 0.49) x10-11 exp-(4.14 ± 0.10 kJ mol-1)/RT cm3 molecule-1 s-1 is derived. Ab initio calculations were performed at the CCSD(T)/CBS level of theory and a potential energy surface has been derived. RRKM theory cal… more
Date: May 2011
Creator: Thompson, Kristopher Michael
Partner: UNT Libraries
open access

Kinetic Study of the Reactions of Chlorine Atoms with Fluoromethane and Fluoromethane-d3 in the Gas Phase

Description: The kinetics of the gas-phase reactions of chlorine atoms with fluoromethane (CH3F) and fluoromethane-d3(CD3F) were tested experimentally. The relative rate method was applied by using CH4 as the reference compound for fluoromethane (CH3F) and CH4 and CH3F as the reference compound for fluoromethane-d3(CD3F). The rate constants for H-abstraction from CH3F and D-abstraction from CD3F were measured at room temperature and a total pressure of 920 Torr using Ar as a diluent. The rate constants are … more
Date: August 2017
Creator: Shao, Kejun
Partner: UNT Libraries

Ligand Effects in Gold(I) Acyclic Diaminocarbene Complexes and Their Influence on Regio- and Enantioselectivity of Homogeneous Gold(I) Catalysis

Description: This dissertation focuses on the computational investigation of gold(I) acyclic diaminocarbene (ADC) complexes and their application in homogeneous gold(I) catalysis. Chapter 2 is an in-depth computational investigation of the σ- and π-bonding interactions that make up the gold-carbene bond. Due to the inherent conformation flexibility of ADC ligands, distortions of the carbene plane can arise that disrupt orbital overlap between the lone pairs on the adjacent nitrogen atoms and the empty p-orb… more
Access: Restricted to UNT Community Members. Login required if off-campus.
Date: August 2019
Creator: Ellison, Matthew Christopher
Partner: UNT Libraries
open access

MBE Growth and Characterization of Graphene on Well-Defined Cobalt Oxide Surfaces: Graphene Spintronics without Spin Injection

Description: The direct growth of graphene by scalable methods on magnetic insulators is important for industrial development of graphene-based spintronic devices, and a route towards substrate-induced spin polarization in graphene without spin injection. X-ray photoelectron spectroscopy (XPS), low energy electron diffraction LEED, electron energy loss spectroscopy (EELS) and Auger electron spectroscopy (AES) demonstrate the growth of Co3O4(111) and CoO(111) to thicknesses greater than 100 Å on Ru(0001) sur… more
Date: August 2017
Creator: Olanipekun, Opeyemi B
Partner: UNT Libraries

Method Development for Corrosion Testing of Carbon Steel and Ni-based Alloy Coatings Exposed to Gas Hydrate Formation Environments

Description: Gas hydrate formation and corrosion can cause serious safety and flow assurance problems in subsea environments. One aspect that has been given less attention is the corrosion behavior of materials in gas hydrate formation environment (GHFE). This work introduces a new technique/method for corrosion testing of materials exposed to low temperatures GHFEs. This technique allows pH monitoring, and control of test conditions like temperature. In this work, GHFE is defined as an environment that inc… more
Access: Restricted to UNT Community Members. Login required if off-campus.
Date: August 2019
Creator: Ozigagu, Christopher E.
Partner: UNT Libraries
open access

Microwave-Assisted Synthesis and Photophysical Properties of Poly-Imine Ambipolar Ligands and Their Rhenium(I) Carbonyl Complexes

Description: The phenomenon luminescence rigidochromism has been reported since the 1970s in tricarbonyldiimine complexes with a general formula [R(CO)3LX] using conventional unipolar diimine ligands such as 2,2;-bipyridine or 1,10-phenanthroline as L, and halogens or simple solvents as X. As a major part of this dissertation, microwave-assisted synthesis, purification, characterization and detailed photoluminescence studies of the complex fac-[ReCl(CO)3L], 1, where L = 4-[4,6-bis(3,5-dimethyl-1H-pyrazol-1-… more
Date: August 2017
Creator: Salazar Garza, Gustavo Adolfo
Partner: UNT Libraries
Back to Top of Screen