You limited your search to:

  Partner: UNT Libraries
 Department: Department of Materials Science and Engineering
 Decade: 2010-2019
 Collection: UNT Theses and Dissertations
Determining the Emissivity of Roofing Samples: Asphalt, Ceramic and Coated Cedar

Determining the Emissivity of Roofing Samples: Asphalt, Ceramic and Coated Cedar

Date: December 2015
Creator: Adesanya, Oludamilola
Description: The goal is to perform heat measurements examine of selected roofing material samples. Those roofing materials are asphalt shingles, ceramics, and cedar. It’s important to understand the concept of heat transfer, which consists of conduction, convection, and radiation. Research work was reviewed on different infrared devices to see which one would be suitable for conducting my experiment. In this experiment, the main focus was on a specific property of radiation. That property is the emissivity, which is the amount of heat a material is able to radiate compared to a blackbody. An infrared measuring device, such as the infrared camera was used to determine the emissivity of each sample by using a measurement formula consisting of certain equations. These equations account for the emissivity, transmittance of heat through the atmosphere and temperatures of the samples, atmosphere and background. The experiment verifies how reasonable the data is compared to values in the emissivity table. A blackbody method such as electrical black tape was applied to help generate the correct data. With this data obtained, the emissivity was examined to understand what factors and parameters affect this property of the materials. This experiment was conducted using a suitable heat source to heat ...
Contributing Partner: UNT Libraries
Processing, Structure and Tribological Property Relations of Ternary Zn-ti-o and Quaternary Zn-ti-zr-o Nanocrystalline Coatings

Processing, Structure and Tribological Property Relations of Ternary Zn-ti-o and Quaternary Zn-ti-zr-o Nanocrystalline Coatings

Date: August 2014
Creator: Ageh, Victor
Description: Conventional liquid lubricants are faced with limitations under extreme cyclic operating conditions, such as in applications that require lubrication when changing from atmospheric pressure to ultrahigh vacuum and ambient air to dry nitrogen (e.g., satellite components), and room to elevated (>500°C) temperatures (e.g., aerospace bearings). Alternatively, solid lubricant coatings can be used in conditions where synthetic liquid lubricants and greases are not applicable; however, individual solid lubricant phases usually perform best only for a limited range of operating conditions. Therefore, solid lubricants that can adequately perform over a wider range of environmental conditions are needed, especially during thermal cycling with temperatures exceeding 500°C. One potential material class investigated in this dissertation is lubricious oxides, because unlike other solid lubricant coatings they are typically thermodynamically stable in air and at elevated temperatures. While past studies have been focused on binary metal oxide coatings, such as ZnO, there have been very few ternary oxide and no reported quaternary oxide investigations. The premise behind the addition of the third and fourth refractory metals Ti and Zr is to increase the number of hard and wear resistant phases while maintaining solid lubrication with ZnO. Therefore, the major focus of this dissertation is to investigate ...
Contributing Partner: UNT Libraries
Laser Deposition, Heat-treatment, and Characterization of the Binary Ti-xmn System

Laser Deposition, Heat-treatment, and Characterization of the Binary Ti-xmn System

Date: August 2013
Creator: Avasarala, Chandana
Description: The present research seeks to characterization of an additively manufactured and heat-treated Ti-xMn gradient alloy, a binary system that has largely been unexplored. In order to rapidly assess this binary system, compositionally graded Ti-xMn (0<x<15 wt%) specimens were fabricated using the LENS (Laser Engineered Net Shaping) and were subsequently heat-treated and characterized using a wide range of techniques. Microstructural changes with respect to the change in thermal treatments, hardness and chemical composition were observed and will be presented. These include assessments of both continuous cooling, leading to observations of both equilibrium and metastable phases, including the titanium martensites, and to direct aging studies looking for composition regimes that produce highly refined alpha precipitates – a subject of great interest given recent understandings of non-classical nucleation and growth mechanisms. The samples were characterized using SEM, EDS, TEM, and XRD and the properties probed using a Vickers Microhardness tester.
Contributing Partner: UNT Libraries
Effect of Alloy Composition, Free Volume and Glass Formability on the Corrosion Behavior of Bulk Metallic Glasses

Effect of Alloy Composition, Free Volume and Glass Formability on the Corrosion Behavior of Bulk Metallic Glasses

Date: December 2015
Creator: Ayyagari, Venkata Aditya
Description: Bulk metallic glasses (BMGs) have received significant research interest due to their completely amorphous structure which results in unique structural and functional properties. Absence of grain boundaries and secondary phases in BMGs results in high corrosion resistance in many different environments. Understanding and tailoring the corrosion behavior can be significant for various structural applications in bulk form as well as coatings. In this study, the corrosion behavior of several Zr-based and Fe-Co based BMGs was evaluated to understand the effect of chemistry as well as quenched in free volume on corrosion behavior and mechanisms. Presence of Nb in Zr-based alloys was found to significantly improve corrosion resistance due to the formation of a stable passive oxide. Relaxed glasses showed lower rates compared to the as-cast alloys. This was attributed to lowering of chemical potential from the reduced fraction of free volume. Potentiodynamic polarization and Electrochemical Impedance Spectroscopy (EIS) techniques helped in quantifying the corrosion rate and polarization resistance. The effect of alloy composition was quantified by extensive surface analysis using Raman spectroscopy, energy dispersive x-ray spectroscopy and auger spectroscopy. Pitting intensity was higher in the as-cast glasses than the relaxed glasses. The electrochemical behavior of a Zr-Ti-Cu-Ni-Be bulk metallic glass ...
Contributing Partner: UNT Libraries
Corrosion Protection of Aerospace Grade Magnesium Alloy Elektron 43™ for Use in Aircraft Cabin Interiors

Corrosion Protection of Aerospace Grade Magnesium Alloy Elektron 43™ for Use in Aircraft Cabin Interiors

Date: August 2013
Creator: Baillio, Sarah S.
Description: Magnesium alloys exhibit desirable properties for use in transportation technology. In particular, the low density and high specific strength of these alloys is of interest to the aerospace community. However, the concerns of flammability and susceptibility to corrosion have limited the use of magnesium alloys within the aircraft cabin. This work studies a magnesium alloy containing rare earth elements designed to increase resistance to ignition while lowering rate of corrosion. The microstructure of the alloy was documented using scanning electron microscopy. Specimens underwent salt spray testing and the corrosion products were examined using energy dispersive spectroscopy.
Contributing Partner: UNT Libraries
A Study of Mechanisms to Engineer Fine Scale Alpha Phase Precipitation in Beta Titanium Alloy, Beta 21S

A Study of Mechanisms to Engineer Fine Scale Alpha Phase Precipitation in Beta Titanium Alloy, Beta 21S

Date: August 2013
Creator: Behera, Amit Kishan
Description: Metastable b-Ti alloys are titanium alloys with sufficient b stabilizer alloying additions such that it's possible to retain single b phase at room temperature. These alloys are of great advantage compared to a/b alloys since they are easily cold rolled, strip produced and can attain excellent mechanical properties upon age hardening. Beta 21S, a relatively new b titanium alloy in addition to these general advantages is known to possess excellent oxidation and corrosion resistance at elevated temperatures. A homogeneous distribution of fine sized a precipitates in the parent b matrix is known to provide good combination of strength, ductility and fracture toughness. The current work focuses on a study of different mechanisms to engineer homogeneously distributed fine sized a precipitates in the b matrix. The precipitation of metastable phases upon low temperature aging and their influence on a precipitation is studied in detail. The precipitation sequence on direct aging above the w solvus temperature is also assessed. The structural and compositional evolution of precipitate phase is determined using multiple characterization tools. The possibility of occurrence of other non-classical precipitation mechanisms that do not require heterogeneous nucleation sites are also analyzed. Lastly, the influence of interstitial element, oxygen on a precipitation ...
Contributing Partner: UNT Libraries
Nanohybrids Based on Solid and Foam Polyurethanes

Nanohybrids Based on Solid and Foam Polyurethanes

Date: May 2015
Creator: Bo, Chong
Description: Polymer nanocomposites are a going part of Materials Science and Engineering. These new composite materials exhibit dimensional and thermal stability of inorganic materials and toughness and dielectric properties of polymers. Development of nanocomposites become an important approach to create high-performance composite materials. In this study silica, fly ash, silica nanotubes and carbon black particles have been added to modify polyurethane foam and thermoplastic polyurethanes. It has been found that the addition of silica can diminish the size of foam bubbles, resulting in an increased stiffness of the material, increase of the compressive strength, and greater resistance to deformation. However, the uniformity of bubbles is reduced, resulting in increased friction of the material. Fly ash added to the foam can make bubbles smaller and improve uniformity of cells. Therefore, the material stiffness and compressive strength, resistance to deformation, and has little impact on the dynamic friction of the material. Adding nanotubes make bubble size unequal, and the arrangement of the bubble uneven, resulting in decreased strength of the material, while the friction increases. After the addition of carbon black to the polyurethane foam, due to the special surface structure of the carbon black, the foam generates more bubbles during the foaming ...
Contributing Partner: UNT Libraries
Processing and Characterization of Nickel-Carbon Base Metal Matrix Composites

Processing and Characterization of Nickel-Carbon Base Metal Matrix Composites

Date: May 2014
Creator: Borkar, Tushar Murlidhar
Description: Carbon nanotubes (CNTs) and graphene nanoplatelets (GNPs) are attractive reinforcements for lightweight and high strength metal matrix composites due to their excellent mechanical and physical properties. The present work is an attempt towards investigating the effect of CNT and GNP reinforcements on the mechanical properties of nickel matrix composites. The CNT/Ni (dry milled) nanocomposites exhibiting a tensile yield strength of 350 MPa (about two times that of SPS processed monolithic nickel ~ 160 MPa) and an elongation to failure ~ 30%. In contrast, CNT/Ni (molecular level mixed) exhibited substantially higher tensile yield strength (~ 690 MPa) but limited ductility with an elongation to failure ~ 8%. The Ni-1vol%GNP (dry milled) nanocomposite exhibited the best balance of properties in terms of strength and ductility. The enhancement in the tensile strength (i.e. 370 MPa) and substantial ductility (~40%) of Ni-1vol%GNP nanocomposites was achieved due to the combined effects of grain refinement, homogeneous dispersion of GNPs in the nickel matrix, and well-bonded Ni-GNP interface, which effectively transfers stress across metal-GNP interface during tensile deformation. A second emphasis of this work was on the detailed 3D microstructural characterization of a new class of Ni-Ti-C based metal matrix composites, developed using the laser engineered net ...
Contributing Partner: UNT Libraries
An Assessment of Uncommon Titanium Binary Systems: Ti-Zn, Ti-Cu, and  Ti-Sb

An Assessment of Uncommon Titanium Binary Systems: Ti-Zn, Ti-Cu, and Ti-Sb

Date: May 2015
Creator: Brice, David
Description: The current study focuses on phase stability and evolution in the titanium-zinc titanium-copper and titanium-antimony systems. The study utilized the Laser Engineering Net Shaping (LENS™) processing technique to deposit compositionally graded samples of three binary system in order to allow the assessment of phase stability and evolution as a function of composition and temperature the material is subjected to. Through LENS™ processing it was possible to create graded samples from Ti-xSb (up to 13wt%) and Ti-xCu (up to 16wt%). The LENS™ deposited gradient were solutionized, and step quenched to specific aging temperature, and the resulting microstructures and phase were characterized utilizing XRD, EDS, SEM, FIB and TEM. The Ti-Zn system proved incapable of being LENS™ deposited due to the low vaporization temperature of Zn; however, a novel processing approach was developed to drip liquid Zn onto Ti powder at temperatures above β transus temperature of Ti (882 ◦C) and below the vaporization temperature of Zn (907 ◦C). The product of this processing technique was characterized in a similar way as the graded LENS™ depositions. From measurements performed on Ti-Sb it seems that Sb could be a potential α stabilizer in Ti due to the presence of a mostly homogeneous α ...
Contributing Partner: UNT Libraries
First Principles Calculations of the Site Substitution Behavior in Gamma Prime Phase in Nickel Based Superalloys

First Principles Calculations of the Site Substitution Behavior in Gamma Prime Phase in Nickel Based Superalloys

Date: August 2012
Creator: Chaudhari, Mrunalkumar
Description: Nickel based superalloys have superior high temperature mechanical strength, corrosion and creep resistance in harsh environments and found applications in the hot sections as turbine blades and turbine discs in jet engines and gas generator turbines in the aerospace and energy industries. The efficiency of these turbine engines depends on the turbine inlet temperature, which is determined by the high temperature strength and behavior of these superalloys. The microstructure of nickel based superalloys usually contains coherently precipitated gamma prime (?) Ni3Al phase within the random solid solution of the gamma () matrix, with the ? phase being the strengthening phase of the superalloys. How the alloying elements partition into the and ? phases and especially in the site occupancy behaviors in the strengthening ? phases play a critical role in their high temperature mechanical behaviors. The goal of this dissertation is to study the site substitution behavior of the major alloying elements including Cr, Co and Ti through first principles based calculations. Site substitution energies have been calculated using the anti-site formation, the standard defect formation formalism, and the vacancy formation based formalism. Elements such as Cr and Ti were found to show strong preference for Al sublattice, whereas Co ...
Contributing Partner: UNT Libraries
Atomistic Computer Simulations of Diffusion Mechanisms in Lithium Lanthanum Titanate Solid State Electrolytes for Lithium Ion Batteries

Atomistic Computer Simulations of Diffusion Mechanisms in Lithium Lanthanum Titanate Solid State Electrolytes for Lithium Ion Batteries

Date: August 2014
Creator: Chen, Chao-Hsu
Description: Solid state lithium ion electrolytes are important to the development of next generation safer and high power density lithium ion batteries. Perovskite-structured LLT is a promising solid electrolyte with high lithium ion conductivity. LLT also serves as a good model system to understand lithium ion diffusion behaviors in solids. In this thesis, molecular dynamics and related atomistic computer simulations were used to study the diffusion behavior and diffusion mechanism in bulk crystal and grain boundary in lithium lanthanum titanate (LLT) solid state electrolytes. The effects of defect concentration on the structure and lithium ion diffusion behaviors in LLT were systematically studied and the lithium ion self-diffusion and diffusion energy barrier were investigated by both dynamic simulations and static calculations using the nudged elastic band (NEB) method. The simulation results show that there exist an optimal vacancy concentration at around x=0.067 at which lithium ions have the highest diffusion coefficient and the lowest diffusion energy barrier. The lowest energy barrier from dynamics simulations was found to be around 0.22 eV, which compared favorably with 0.19 eV from static NEB calculations. It was also found that lithium ions diffuse through bottleneck structures made of oxygen ions, which expand in dimension by 8-10% ...
Contributing Partner: UNT Libraries
Processing and Characterization of Polycarbonate Foams with Supercritical Co2 and 5-Phenyl-1h-Tetrazole

Processing and Characterization of Polycarbonate Foams with Supercritical Co2 and 5-Phenyl-1h-Tetrazole

Date: May 2015
Creator: Cloarec, Thomas
Description: Since their discovery in the 1930s, polymeric foams have been widely used in the industry for a variety of applications such as acoustical and thermal insulation, filters, absorbents etc. The reason for this ascending trend can be attributed to factors such as cost, ease of processing and a high strength to weight ratio compared to non-foamed polymers. The purpose of this project was to develop an “indestructible” material made of polycarbonate (PC) for industrial applications. Due to the high price of polycarbonate, two foaming methods were investigated to reduce the amount of material used. Samples were foamed physically in supercritical CO2 or chemically with 5-phenyl-1H-tetrazole. After thermal characterization of the foams in differential scanning calorimetry (DSC), we saw that none of the foaming methods had an influence on the glass transition of polycarbonate. Micrographs taken in scanning electron microscopy (SEM) showed that foams obtained in physical and chemical foaming had different structures. Indeed, samples foamed in supercritical CO2 exhibited a microcellular opened-cell structure with a high cell density and a homogeneous cell distribution. On the other hand, samples foamed with 5-phenyl-1H-tetrazole had a macrocellular closed-cell structure with a much smaller cell density and a random cell distribution. Compression testing showed ...
Contributing Partner: UNT Libraries
A Study of Power Generation From a Low-cost Hydrokinetic Energy System

A Study of Power Generation From a Low-cost Hydrokinetic Energy System

Date: August 2013
Creator: Davila Vilchis, Juana Mariel
Description: The kinetic energy in river streams, tidal currents, or other artificial water channels has been used as a feasible source of renewable power through different conversion systems. Thus, hydrokinetic energy conversion systems are attracting worldwide interest as another form of distributed alternative energy. Because these systems are still in early stages of development, the basic approaches need significant research. The main challenges are not only to have efficient systems, but also to convert energy more economically so that the cost-benefit analysis drives the growth of this alternative energy form. One way to view this analysis is in terms of the energy conversion efficiency per unit cost. This study presents a detailed assessment of a prototype hydrokinetic energy system along with power output costs. This experimental study was performed using commercial low-cost blades of 20 in diameter inside a tank with water flow speed up to 1.3 m/s. The work was divided into two stages: (a) a fixed-pitch blade configuration, using a radial permanent magnet generator (PMG), and (b) the same hydrokinetic turbine, with a variable-pitch blade and an axial-flux PMG. The results indicate that even though the efficiency of a simple blade configuration is not high, the power coefficient is ...
Contributing Partner: UNT Libraries
Dynamic Precipitation of Second Phase Under Deformed Condition in Mg-nd Based Alloy

Dynamic Precipitation of Second Phase Under Deformed Condition in Mg-nd Based Alloy

Date: December 2013
Creator: Dendge, Nilesh Bajirao
Description: Magnesium alloys are the lightweight structural materials with high strength to weigh ratio that permits their application in fuel economy sensitive automobile industries. Among the several flavors of of Mg-alloys, precipitation hardenable Mg-rare earth (RE) based alloys have shown good potential due to their favorable creep resistance within a wide window of operating temperatures ranging from 150°C to 300°C. A key aspect of Mg-RE alloys is the presence of precipitate phases that leads to strengthening of such alloys. Several notable works, in literature, have been done to examine the formation of such precipitate phases. However, there are very few studies that evaluated the effect stress induced deformation on the precipitation in Mg-RE alloys. Therefore, the objective of this work is to examine influence of deformation on the precipitation of Mg-Nd based alloys. To address this problem, precipitation in two Mg-Nd based alloys, subjected to two different deformation conditions, and was examined via transmission electron microscopy (TEM) and atom probe tomography (APT). In first deformation condition, Md-2.6wt%Nd alloy was subjected to creep deformation (90MPa / 177ºC) to failure. Effect of stress-induced deformation was examined by comparing and contrasting with precipitation in non-creep tested specimens subjected to isothermal annealing (at 177ºC). In ...
Contributing Partner: UNT Libraries
Phase Separation and Second Phase Precipitation in Beta Titanium Alloys

Phase Separation and Second Phase Precipitation in Beta Titanium Alloys

Date: May 2011
Creator: Devaraj, Arun
Description: The current understanding of the atomic scale phenomenon associated with the influence of beta phase instabilities on the evolution of microstructure in titanium alloys is limited due to their complex nature. Such beta phase instabilities include phase separation and precipitation of nano-scale omega and alpha phases in the beta matrix. The initial part of the present study focuses on omega precipitation within the beta matrix of model binary titanium molybdenum (Ti-Mo) alloys. Direct atomic scale observation of pre-transition omega-like embryos in quenched alloys, using aberration-corrected high resolution scanning transmission electron microscopy and atom probe tomography (APT) was compared and contrasted with the results of first principles computations performed using the Vienna ab initio simulation package (VASP) to present a novel mechanism of these special class of phase transformation. Thereafter the beta phase separation and subsequent alpha phase nucleation in a Ti-Mo-Al ternary alloy was investigated by coupling in-situ high energy synchrotron x-ray diffraction with ex-situ characterization studies performed using aberration corrected transmission electron microscopy and APT to develop a deeper understanding of the mechanism of transformation. Subsequently the formation of the omega phase in the presence of simultaneous development of compositional phase separation within the beta matrix phase of a ...
Contributing Partner: UNT Libraries
An Integrated Approach to Determine Phenomenological Equations in Metallic Systems

An Integrated Approach to Determine Phenomenological Equations in Metallic Systems

Date: December 2012
Creator: Ghamarian, Iman
Description: It is highly desirable to be able to make predictions of properties in metallic materials based upon the composition of the material and the microstructure. Unfortunately, the complexity of real, multi-component, multi-phase engineering alloys makes the provision of constituent-based (i.e., composition or microstructure) phenomenological equations extremely difficult. Due to these difficulties, qualitative predictions are frequently used to study the influence of microstructure or composition on the properties. Neural networks were used as a tool to get a quantitative model from a database. However, the developed model is not a phenomenological model. In this study, a new method based upon the integration of three separate modeling approaches, specifically artificial neural networks, genetic algorithms, and monte carlo was proposed. These three methods, when coupled in the manner described in this study, allows for the extraction of phenomenological equations with a concurrent analysis of uncertainty. This approach has been applied to a multi-component, multi-phase microstructure exhibiting phases with varying spatial and morphological distributions. Specifically, this approach has been applied to derive a phenomenological equation for the prediction of yield strength in a+b processed Ti-6-4. The equation is consistent with not only the current dataset but also, where available, the limited information regarding certain ...
Contributing Partner: UNT Libraries
Microstructure Evolution in Laser Deposited Nickel-Titanium-Carbon in situ Metal Matrix Composite

Microstructure Evolution in Laser Deposited Nickel-Titanium-Carbon in situ Metal Matrix Composite

Date: December 2010
Creator: Gopagoni, Sundeep
Description: Ni/TiC metal matrix composites have been processed using the laser engineered net shaping (LENS) process. As nickel does not form an equilibrium carbide phase, addition of a strong carbide former in the form of titanium reinforces the nickel matrix resulting in a promising hybrid material for both surface engineering as well as high temperature structural applications. Changing the relative amounts of titanium and carbon in the nickel matrix, relatively low volume fraction of refined homogeneously distributed carbide precipitates, formation of in-situ carbide precipitates and the microstructural changes are investigated. The composites have been characterized in detail using x-ray diffraction, scanning electron microscopy (including energy dispersive spectroscopy (XEDS) mapping and electron backscatter diffraction (EBSD)), Auger electron spectroscopy, and transmission (including high resolution) electron microscopy. Both primary and eutectic titanium carbides, observed in this composite, exhibited the fcc-TiC structure (NaCl-type). Details of the orientation relationship between Ni and TiC have been studied using SEM-EBSD and high resolution TEM. The results of micro-hardness and tribology tests indicate that these composites have a relatively high hardness and a steady-state friction coefficient of ~0.5, both of which are improvements in comparison to LENS deposited pure Ni.
Contributing Partner: UNT Libraries
First Principles Study of Metastable Beta Titanium Alloys

First Principles Study of Metastable Beta Titanium Alloys

Date: August 2015
Creator: Gupta, Niraj
Description: The high temperature BCC phase (b) of titanium undergoes a martensitic transformation to HCP phase (a) upon cooling, but can be stabilized at room temperature by alloying with BCC transition metals such as Mo. There exists a metastable composition range within which the alloyed b phase separates into a + b upon equilibrium cooling but not when rapidly quenched. Compositional partitioning of the stabilizing element in as-quenched b microstructure creates nanoscale precipitates of a new simple hexagonal w phase, which considerably reduces ductility. These phase transformation reactions have been extensively studied experimentally, yet several significant questions remain: (i) The mechanism by which the alloying element stabilizes the b phase, thwarts its transformation to w, and how these processes vary as a function of the concentration of the stabilizing element is unclear. (ii) What is the atomistic mechanism responsible for the non-Arrhenius, anomalous diffusion widely observed in experiments, and how does it extend to low temperatures? How does the concentration of the stabilizing elements alter this behavior? There are many other w forming alloys that such exhibit anomalous diffusion behavior. (iii) A lack of clarity remains on whether w can transform to a -phase in the crystal bulk or if it ...
Contributing Partner: UNT Libraries
Characterization of Ti-6al-4v Produced Via Electron Beam Additive Manufacturing

Characterization of Ti-6al-4v Produced Via Electron Beam Additive Manufacturing

Date: December 2015
Creator: Hayes, Brian J.
Description: In recent years, additive manufacturing (AM) has become an increasingly promising method used for the production of structural metallic components. There are a number of reasons why AM methods are attractive, including the ability to produce complex geometries into a near-net shape and the rapid transition from design to production. Ti-6Al-4V is a titanium alloy frequently used in the aerospace industry which is receiving considerable attention as a good candidate for processing via electron beam additive manufacturing (EBAM). The Sciaky EBAM method combines a high-powered electron beam, weld-wire feedstock, and a large build chamber, enabling the production of large structural components. In order to gain wide acceptance of EBAM of Ti-6Al-4V as a viable manufacturing method, it is important to understand broadly the microstructural features that are present in large-scale depositions, including specifically: the morphology, distribution and texture of the phases present. To achieve such an understanding, stereological methods were used to populate a database quantifying key microstructural features in Ti-6Al-4V including volume fraction of phases, a lath width, colony scale factor, and volume fraction of basket weave type microstructure. Microstructural features unique to AM, such as elongated grains and banded structures, were also characterized. Hardness and tensile testing were ...
Contributing Partner: UNT Libraries
Atomistic Studies of Point Defect Migration Rates in the Iron-Chromium System

Atomistic Studies of Point Defect Migration Rates in the Iron-Chromium System

Date: August 2010
Creator: Hetherly, Jeffery
Description: Generation and migration of helium and other point defects under irradiation causes ferritic steels based on the Fe-Cr system to age and fail. This is motivation to study point defect migration and the He equation of state using atomistic simulations due to the steels' use in future reactors. A new potential for the Fe-Cr-He system developed by collaborators at the Lawrence Livermore National Laboratory was validated using published experimental data. The results for the He equation of state agree well with experimental data. The activation energies for the migration of He- and Fe-interstitials in varying compositions of Fe-Cr lattices agree well with prior work. This research did not find a strong correlation between lattice ordering and interstitial migration energy
Contributing Partner: UNT Libraries
Scratch Modeling of Polymeric Materials with Molecular Dynamics

Scratch Modeling of Polymeric Materials with Molecular Dynamics

Date: August 2012
Creator: Hilbig, Travis
Description: It is impossible to determine the amount of money that is spent every replacing products damaged from wear, but it is safe to assume that it is in the millions of dollars. With metallic materials, liquid lubricants are often used to prevent wear from materials rubbing against one another. However, with polymeric materials, liquid lubricants cause swelling, creating an increase in friction and therefore increasing the wear. Therefore, a different method or methods to mitigate wear in polymers should be developed. For better understanding of the phenomenon of wear, scratch resistance testing can be used. For this project, classic molecular dynamics is used to study the mechanics of nanometer scale scratching on amorphous polymeric materials. As a first approach, a model was created for polyethylene, considering intramolecular and intermolecular interactions as well as mass and volume of the CH2 monomers in a polymer chain. The obtained results include analysis of penetration depth and recovery percentage related to indenter force and size.
Contributing Partner: UNT Libraries
Laser Surface Modification on Az31b Mg Alloy for Bio-wettability

Laser Surface Modification on Az31b Mg Alloy for Bio-wettability

Date: December 2013
Creator: Ho, YeeHsien
Description: Laser surface modification of AZ31B Magnesium alloy changes surface composition and roughness to provide improved surface bio-wettability. Laser processing resulted in phase transformation and grain refinement due to rapid quenching effect. Furthermore, instantaneous heating and vaporization resulted in removal of material, leading the textured surface generation. A study was conducted on a continuum-wave diode-pumped ytterbium laser to create multiple tracks for determining the resulting bio-wettability. Five different laser input powers were processed on Mg alloy, and then examined by XRD, SEM, optical profilometer, and contact angle measurement. A finite element based heat transfer model was developed using COMSOL multi-physics package to predict the temperature evolution during laser processing. The thermal histories predicted by the model are used to evaluate the cooling rates and solidification rate and the associated changes in the microstructure. The surface energy of laser surface modification samples can be calculated by measuring the contact angle with 3 different standard liquid (D.I water, Formamide, and 1-Bromonaphthalen). The bio-wettability of the laser surface modification samples can be conducted by simulated body fluid contact angle measurement. The results of SEM, 3D morphology, XRD, and contact angle measurement show that the grain size and roughness play role for wetting behavior of ...
Contributing Partner: UNT Libraries
Surface Modifications to Enhance the Wear Resistance and the Osseo-integration Properties of Biomedical Ti-alloy

Surface Modifications to Enhance the Wear Resistance and the Osseo-integration Properties of Biomedical Ti-alloy

Date: August 2013
Creator: Kami, Pavani
Description: The current study focuses on improving the wear resistance of femoral head component and enhancing the osseo-integration properties of femoral stem component of a hip implant made of a new generation low modulus alloy, Ti-35Nb-7Zr-5Ta or TNZT. Different techniques that were adopted to improve the wear resistance of low-modulus TNZT alloy included; (a) fabrication of graded TNZT-xB (x= 0, 1, 2 wt%) samples using LENS, (b) oxidation, and (c) LASER nitriding of TNZT. TNZT-1B and TNZT-O samples have shown improved wear resistance when tested against UHMWPE ball in SBF medium. A new class of bio-ceramic coatings based on calcium phosphate (CaP), was applied on the TNZT sample surface and was further laser processed with the objective of enhancing their osseo-integration properties. With optimized LASER parameters, TNZT-CaP samples have shown improved corrosion resistance, surface wettability and cellular response when compared to the base TNZT sample.
Contributing Partner: UNT Libraries
Atomistic Simulations of Deformation Mechanisms in Ultra-Light Weight Mg-Li Alloys

Atomistic Simulations of Deformation Mechanisms in Ultra-Light Weight Mg-Li Alloys

Date: May 2015
Creator: Karewar, Shivraj
Description: Mg alloys have spurred a renewed academic and industrial interest because of their ultra-light-weight and high specific strength properties. Hexagonal close packed Mg has low deformability and a high plastic anisotropy between basal and non-basal slip systems at room temperature. Alloying with Li and other elements is believed to counter this deficiency by activating non-basal slip by reducing their nucleation stress. In this work I study how Li addition affects deformation mechanisms in Mg using atomistic simulations. In the first part, I create a reliable and transferable concentration dependent embedded atom method (CD-EAM) potential for my molecular dynamics study of deformation. This potential describes the Mg-Li phase diagram, which accurately describes the phase stability as a function of Li concentration and temperature. Also, it reproduces the heat of mixing, lattice parameters, and bulk moduli of the alloy as a function of Li concentration. Most importantly, our CD-EAM potential reproduces the variation of stacking fault energy for basal, prismatic, and pyramidal slip systems that influences the deformation mechanisms as a function of Li concentration. This success of CD-EAM Mg-Li potential in reproducing different properties, as compared to literature data, shows its reliability and transferability. Next, I use this newly created potential ...
Contributing Partner: UNT Libraries
FIRST PREV 1 2 3 4 NEXT LAST