You limited your search to:

  Partner: UNT Libraries
 Decade: 2010-2019
 Degree Discipline: Materials Science and Engineering
 Collection: UNT Theses and Dissertations
Atomistic Studies of Point Defect Migration Rates in the Iron-Chromium System
Generation and migration of helium and other point defects under irradiation causes ferritic steels based on the Fe-Cr system to age and fail. This is motivation to study point defect migration and the He equation of state using atomistic simulations due to the steels' use in future reactors. A new potential for the Fe-Cr-He system developed by collaborators at the Lawrence Livermore National Laboratory was validated using published experimental data. The results for the He equation of state agree well with experimental data. The activation energies for the migration of He- and Fe-interstitials in varying compositions of Fe-Cr lattices agree well with prior work. This research did not find a strong correlation between lattice ordering and interstitial migration energy digital.library.unt.edu/ark:/67531/metadc30463/
Biocompatible Hybrid Nanomaterials Involving Polymers and Hydrogels Interfaced with Phosphorescent Complexes and Toxin-Free Metallic Nanoparticles for Biomedical Applications
The major topics discussed are all relevant to interfacing brightly phosphorescent and non-luminescent coinage metal complexes of [Ag(I) and Au(I)] with biopolymers and thermoresponsive gels for making hybrid nanomaterials with an explanation on syntheses, characterization and their significance in biomedical fields. Experimental results and ongoing work on determining outreaching consequences of these hybrid nanomaterials for various biomedical applications like cancer therapy, bio-imaging and antibacterial abilities are described. In vitro and in vivo studies have been performed on majority of the discussed hybrid nanomaterials and determined that the cytotoxicity or antibacterial activity are comparatively superior when compared to analogues in literature. Consequential differences are noticed in photoluminescence enhancement from hybrid phosphorescent hydrogels, phosphorescent complex ability to physically crosslink, Au(I) sulfides tendency to form NIR (near-infrared) absorbing AuNPs compared to any similar work in literature. Syntheses of these hybrid nanomaterials has been thoroughly investigated and it is determined that either metallic nanoparticles syntheses or syntheses of phosphorescent hydrogels can be carried in single step without involving any hazardous reducing agents or crosslinkers or stabilizers that are commonly employed during multiple step syntheses protocols for syntheses of similar materials in literature. These astounding results that have been discovered within studies of hybrid nanomaterials are an asset to applications ranging from materials development to health science and will have striking effect on environmental and green chemistry approaches. digital.library.unt.edu/ark:/67531/metadc84243/
Biodegradable Poly(hydroxy Butyrate-co-valerate) Nanocomposites And Blends With Poly(butylene Adipate-co-terephthalate) For Sensor Applications
The utilization of biodegradable polymers is critical for developing “cradle to cradle” mindset with ecological, social and economic consequences. Poly(hydroxy butyrate-co-valerate) (PHBV) shows significant potential for many applications with a polypropylene equivalent mechanical performance. However, it has limitations including high crystallinity, brittleness, small processing window, etc. which need to be overcome before converting them into useful products. Further the development of biodegradable strain sensing polymer sensors for structural health monitoring has been a growing need. In this dissertation I utilize carbon nanotubes as a self sensing dispersed nanofiller. The impact of its addition on PHBV and a blend of PHBV with poly(butylene adipate-co-terephthalate) (PBAT) polymer was examined. Nanocomposites and blends of PHBV, PBAT, and MWCNTs were prepared by melt-blending. The effect of MWCNTs on PHBV crystallinity, crystalline phase, quasi-static and dynamic mechanical property was studied concurrently with piezoresistive response. In PHBV/PBAT blends a rare phenomenon of melting point elevation by the addition of low melting point PBAT was observed. The blends of these two semicrystalline aliphatic and aromatic polyesters were investigated by using differential scanning calorimetry, small angle X-ray scattering, dynamic mechanical analysis, surface energy measurement by contact angle method, polarized optical and scanning electron microscopy, and rheology. The study revealed a transition of immiscible blend compositions to miscible blend compositions across the 0-100 composition range. PHBV10, 20, and 30 were determined to be miscible blends based on a single Tg and rheological properties. The inter-relation between stress, strain, morphological structure and piezoresistive response of MWCNT filled PHBV and PHBV/PBAT blend system was thoroughly investigated. The outcomes of piezoreistivity study indicated MWCNT filled PHBV and PHBV/PBAT blend system as a viable technology for structural health monitoring. Finally, the compostability of pure polymer, blend system, and MWCNT filled system was studied indicating that PBAT and CNT decreased the biodegradability of PHBV with CNT being a better contributor than PBAT. digital.library.unt.edu/ark:/67531/metadc103405/
Bioresorbable Polymer Blend Scaffold for Tissue Engineering
Tissue engineering merges the disciplines of study like cell biology, materials science, engineering and surgery to enable growth of new living tissues on scaffolding constructed from implanted polymeric materials. One of the most important aspects of tissue engineering related to material science is design of the polymer scaffolds. The polymer scaffolds needs to have some specific mechanical strength over certain period of time. In this work bioresorbable aliphatic polymers (PCL and PLLA) were blended using extrusion and solution methods. These blends were then extruded and electrospun into fibers. The fibers were then subjected to FDA standard in vitro immersion degradation tests where its mechanical strength, water absorption, weight loss were observed during the eight weeks. The results indicate that the mechanical strength and rate of degradation can be tailored by changing the ratio of PCL and PLLA in the blend. Processing influences these parameters, with the loss of mechanical strength and rate of degradation being higher in electrospun fibers compared to those extruded. A second effort in this thesis addressed the potential separation of the scaffold from the tissue (loss of apposition) due to the differences in their low strain responses. This hypothesis that using knit with low tension will have better compliance was tested and confirmed. digital.library.unt.edu/ark:/67531/metadc68008/
Carrier Mobility, Charge Trapping Effects on the Efficiency of Heavily Doped Organic Light-Emitting Diodes, and EU(lll) Based Red OLEDs
Transient electroluminescence (EL) was used to measure the onset of emission delay in OLEDs based on transition metal, phosphorescent bis[3,5-bis(2-pyridyl)-1,2,4-triazolato] platinum(ΙΙ) and rare earth, phosphorescent Eu(hfa)3 with 4'-(p-tolyl)-2,2":6',2" terpyridine (ttrpy) doped into 4,4'-bis(carbazol-9-yl) triphenylamine (CBP), from which the carrier mobility was determined. For the Pt(ptp)2 doped CBP films in OLEDs with the structure: ITO/NPB (40nm)/mcp (10nm)/65% Pt(ptp)2:CBP (25nm)/TPBI (30nm)/Mg:Ag (100nm), where NPB=N, N'-bis(1-naphthyl)-N-N'-biphenyl-1, 1'-biphenyl-4, MCP= N, N'-dicarbazolyl-3,5-benzene, TPBI=1,3,5-tris(phenyl-2-benzimidazolyl)-benzene, delayed recombination was observed and based on its dependence on frequency and duty cycle, ascribed to trapping and de-trapping processes at the interface of the emissive layer and electron blocker. The result suggests that the exciton recombination zone is at, or close to the interface between the emissive layer and electron blocker. The lifetime of the thin films of phosphorescent emitter Pt(ptp)2 were studied for comparison with rare earth emitter Eu(hfa)3. The lifetime of 65% Pt(ptp)2:CBP co-film was around 638 nanoseconds at the emission peak of 572nm, and the lifetime of neat Eu(hfa)3 film was obtained around 1 millisecond at 616 nm, which supports the enhanced efficiency obtained from the Pt(ptp)2 devices. The long lifetime and narrow emission of the rare earth dopant Eu(hfa)3 is a fundamental factor limiting device performance. Red organic light emitting diodes (OLEDs) based on the rare earth emitter Eu(hfa)3 with 4'-(p-tolyl)-2,2":6',2" terpyridine (ttrpy) complex have been studied and improved with respect performance. The 4.5% Eu(hfa)3 doped into CBP device produced the best power efficiency of 0.53 lm/W, and current efficiency of 1.09 cd/A. The data suggests that the long lifetime of the f-f transition of the Eu ion is a principal limiting factor irrespective of how efficient the energy transfer from the host to the dopant and the antenna effect are. digital.library.unt.edu/ark:/67531/metadc30483/
Corrosion Protection of Aerospace Grade Magnesium Alloy Elektron 43™ for Use in Aircraft Cabin Interiors
Magnesium alloys exhibit desirable properties for use in transportation technology. In particular, the low density and high specific strength of these alloys is of interest to the aerospace community. However, the concerns of flammability and susceptibility to corrosion have limited the use of magnesium alloys within the aircraft cabin. This work studies a magnesium alloy containing rare earth elements designed to increase resistance to ignition while lowering rate of corrosion. The microstructure of the alloy was documented using scanning electron microscopy. Specimens underwent salt spray testing and the corrosion products were examined using energy dispersive spectroscopy. digital.library.unt.edu/ark:/67531/metadc283846/
Device Engineering for Enhanced Efficiency from Platinum(II) Phosphorescent OLEDs
Access: Use of this item is restricted to the UNT Community.
Phosphorescent organic light emitting diodes (PHOLEDs) based on efficient electrophosphorescent dopant, platinum(II)-pyridyltriazolate complex, bis[3,5-bis(2-pyridyl)-1,2,4-triazolato]platinum(II) (Pt(ptp)2) have been studied and improved with respect to power efficiency, external efficiency, chromacity and efficiency roll-off. By studying the electrical and optical behavior of the doped devices and functionality of the various constituent layers, devices with a maximum EQE of 20.8±0.2 % and power efficiency of 45.1±0.9 lm/W (77lm/W with luminaries) have been engineered. This improvement compares to devices whose emission initially could only be detected by a photomultiplier tube in a darkened environment. These devices consisted of a 65 % bis[3,5-bis(2-pyridyl)-1,2,4-triazolato]platinum(II) (Pt(ptp)2) doped into 4,4'-bis(carbazol-9-yl)triphenylamine (CBP) an EML layer, a hole transporting layer/electron blocker of 1,1-bis[(di-4-tolylamino)phenyl]cyclohexane (TAPC), an electron transport layer of 1,3,5-tris(phenyl-2-benzimidazolyl)-benzene (TPBI), and a LiF/Al cathode. These devices show the acceptable range for warm white light quadrants and qualify to be called "warm white" even w/o adding another emissive layer. Dual EML devices composed of neat Pt(ptp)2 films emitting orange and CBP: Pt(ptp)2 film emitting blue-green produced a color rendering index (CRI) of 59 and color coordinates (CIE) of (0.47,0.49) at 1000Cd/m² with power efficiency of 12.6±0.2 lm/W and EQE of 10.8±0.2 %. Devices with two blue fluorescent emission layers as singlet filters and one broad yellow emission layer from CBP: Pt(ptp)2 displayed a CRI of 78 and CIE of (0.28,0.31) at 100Cd/m² with maximum power efficiency of 6.7±0.3 lm/W and EQE of 5.7±0.2 %. digital.library.unt.edu/ark:/67531/metadc30482/
Effect of Retting on Surface Chemistry and Mechanical Performance Interactions in Natural Fibers for High Performance Polymer Composites
Access: Use of this item is restricted to the UNT Community.
Sustainability through replacement of non-renewable fibers with renewable fibers is an ecological need. Impact of transportation costs from South-east Asia on the life cycle analysis of the composite is detrimental. Kenaf is an easily grown crop in America. Farm based processing involves placing the harvested crop in rivers and ponds, where retting of the fibers from the plant (separation into fibers) can take 2 weeks or more. The objective of this thesis is to analyze industrially viable processes for generating fibers and examine their synergistic impact on mechanical performance, surface topography and chemistry for functional composites. Comparison has been made with commercial and conventional retting process, including alkali retting, enzymatic retting, retting in river and pond water (retting occurs by natural microbial population) with controlled microbial retting. The resulting kenaf fibers were characterized by dynamic mechanical analysis (DMA), Raman spectroscopy (FT-Raman), Fourier transform infrared spectroscopy (FT-IR), polarized optical microscopy (POM), X-ray photoelectron spectroscopy (XPS), Scanning electron microscopy (SEM) optical fluorescence microscopy, atomic force microscopy (AFM) and carbohydrate analysis. DMA results showed that pectinase and microbe treated fibers have superior viscoelastic properties compared to alkali retting. XPS, Raman, FT-IR and biochemical analysis indicated that the controlled microbial and pectinase retting was effective in removing pectin, hemicellulose and lignin. SEM, optical microscopy and AFM analysis showed the surface morphology and cross sectional architecture were preserved in pectinase retting. Experimental results showed that enzymatic retting at 48 hours and controlled microbial retting at 72 hours yield uniform and superior quality fibers compared to alkali and natural retting process. Controlled microbial retting is an inexpensive way to produce quality fibers for polymer composite reinforcement. digital.library.unt.edu/ark:/67531/metadc271883/
Effects of Plasma, Temperature and Chemical Reactions on Porous Low Dielectric Films for Semiconductor Devices
Low-dielectric (k) films are one of the performance drivers for continued scaling of integrated circuit devices. These films are needed in microelectronic device interconnects to lower power consumption and minimize cross talk between metal lines that "interconnect" transistors. Low-k materials currently in production for the 45 and 65 nm node are most often organosilicate glasses (OSG) with dielectric constants near 2.8 and nominal porosities of 8-10%. The next generation of low-k materials will require k values 2.6 and below for the 45 nm device generation and beyond. The continuous decrease in device dimensions in ultra large scale integrated (ULSI) circuits have brought about the replacement of the silicon dioxide interconnect dielectric (ILD), which has a dielectric constant (k) of approximately 4.1, with low dielectric constant materials. Lowering the dielectric constant reduces the propagation delays, RC constant (R = the resistance of the metal lines; C = the line capacitance), and metal cross-talk between wires. In order to reduce the RC constants, a number of low-k materials have been studied for use as intermetal dielectrics. The k values of these dielectric materials can be lowered by replacing oxide films with carbon-based polymer films, incorporating hydrocarbon functional groups into oxide films (SiOCH films), or introducing porogens in the film during processing to create pores. However, additional integration issues such as damage to these materials caused by plasma etch, plasma ash, and wet etch processes are yet to be overcome. This dissertation reports the effects of plasma, temperature and chemical reactions on low-k SiOCH films. Plasma ash processes have been known to cause hydrophobic films to lose their hydrophobic methyl groups, rendering them to be hydrophilic. This allows the films to readily absorb moisture. Supercritical carbon dioxide (SC-CO2) can be used to transport silylating agents, hexamethyldisilazane (HMDS) and diethoxy-dimethlysilane (DEDMS), to functionalize the damaged surfaces of the ash-damaged films. The thermal stability of the low-k films after SC-CO2 treatment is also discussed by performing in-situ heat treatments on the films. UV curing has been shown to reduce the amount of pores while showing only a limited change dielectric constant. This work goes on to describe the effect of UV curing on low-k films after exposing the films to supercritical carbon dioxide (CO2) in combination with tetramethylorthosilicate (TMOS). digital.library.unt.edu/ark:/67531/metadc33192/
Electrical and Structure Properties of High-κ Barium Tantalite and Aluminum Oxide Interface with Zinc Oxide for Applications in Transparent Thin Film Transistors
ZnO has generated interest for flexible electronics/optoelectronic applications including transparent thin film transistors (TFTs). For this application, low temperature processes that simultaneously yield good electrical conductivity and optical transparency and that are compatible with flexible substrates such as plastic, are of paramount significance. Further, gate oxides are a critical component of TFTs, and must exhibit low leakage currents and self-healing breakdown in order to ensure optimal TFTs switching performance and reliability. Thus, the objective of this work was twofold: (1) develop an understanding of the processing-structure-property relationships of ZnO and high-κ BaTa2O6 and Al2O3 (2) understand the electronic defect structure of BaTa2O6 /ZnO and Al2O3/ZnO interfaces and develop insight to how such interfaces may impact the switching characteristics (speed and switching power) of TFTs featuring these materials. Of the ZnO films grown by atomic layer deposition (ALD), pulsed laser deposition (PLD) and magnetron sputtering at 100-200 °C, the latter method exhibited the best combination of n-type electrical conductivity and optical transparency. These determinations were made using a combination of photoluminescence, photoluminescence excitation, absorption edge and Hall measurements. Metal-insulator-semiconductor devices were then fabricated with sputtered ZnO and high-κ BaTa2O6 and Al2O3 and the interfaces of high-κ BaTa2O6 and Al2O3 with ZnO were analyzed using frequency dependent C-V and G-V measurements. The insulator films were deposited at room temperature by magnetron sputtering using optimized processing conditions. Although the Al2O3 films exhibited a lower breakdown strength and catastrophic breakdown behavior compared to BaTa2O6/ZnO interface, the Al2O3/ZnO interface was characterized by more than an order of magnitude smaller density of interface traps and interface trapped charge. The BaTa2O6 films in addition were characterized by a significantly higher concentration of fixed oxide charge. The transition from accumulation to inversion in the Al2O3 MIS structure was considerably sharper, and occurred at less than one tenth of the voltage required for the same transition in the BaTa2O6 case. The frequency dispersion effects were also noticeably more severe in the BaTa2O6 structures. XPS results suggest that acceptor-like structural defects associated with oxygen vacancies in the non-stoichiometric BaTa2O6 films are responsible for the extensive electrical trapping and poor high frequency response. The Al2O3 films were essentially stoichiometric. The results indicate that amorphous Al2O3 is better suited than BaTa2O6 as a gate oxide for transparent thin film transistor applications where low temperature processing is a prerequisite, assuming of course that the operation voltage of such devices is lower than the breakdown voltage. Also, the operation power for the devices with amorphous Al2O3 is lower than the case for devices with BaTa2O6 due to the smaller fixed oxide charges and interface trap density. digital.library.unt.edu/ark:/67531/metadc84233/
First Principles Calculations of the Site Substitution Behavior in Gamma Prime Phase in Nickel Based Superalloys
Nickel based superalloys have superior high temperature mechanical strength, corrosion and creep resistance in harsh environments and found applications in the hot sections as turbine blades and turbine discs in jet engines and gas generator turbines in the aerospace and energy industries. The efficiency of these turbine engines depends on the turbine inlet temperature, which is determined by the high temperature strength and behavior of these superalloys. The microstructure of nickel based superalloys usually contains coherently precipitated gamma prime (?) Ni3Al phase within the random solid solution of the gamma () matrix, with the ? phase being the strengthening phase of the superalloys. How the alloying elements partition into the and ? phases and especially in the site occupancy behaviors in the strengthening ? phases play a critical role in their high temperature mechanical behaviors. The goal of this dissertation is to study the site substitution behavior of the major alloying elements including Cr, Co and Ti through first principles based calculations. Site substitution energies have been calculated using the anti-site formation, the standard defect formation formalism, and the vacancy formation based formalism. Elements such as Cr and Ti were found to show strong preference for Al sublattice, whereas Co was found to have a compositionally dependent site preference. In addition, the interaction energies between Cr-Cr, Co-Co, Ti-Ti and Cr-Co atoms have also been determined. Along with the charge transfer, chemical bonding and alloy chemistry associated with the substitutions has been investigated by examining the charge density distributions and electronic density of states to explain the chemical nature of the site substitution. Results show that Cr and Co atoms prefer to be close by on either Al sublattice or on a Ni-Al mixed lattice, suggesting a potential tendency of Cr and Co segregation in the ? phase. digital.library.unt.edu/ark:/67531/metadc149571/
Growth, Structure and Tribological Properties of Atomic Layer Deposited Lubricious Oxide Nanolaminates
Friction and wear mitigation is typically accomplished by introducing a shear accommodating layer (e.g., a thin film of liquid) between surfaces in sliding and/or rolling contacts. When the operating conditions are beyond the liquid realm, attention turns to solid coatings. Solid lubricants have been widely used in governmental and industrial applications for mitigation of wear and friction (tribological properties). Conventional examples of solid lubricants are MoS2, WS2, h-BN, and graphite; however, these and some others mostly perform best only for a limited range of operating conditions, e.g. ambient air versus dry nitrogen and room temperature versus high temperatures. Conversely, lubricious oxides have been studied lately as good potential candidates for solid lubricants because they are thermodynamically stable and environmentally robust. Oxide surfaces are generally inert and typically do not form strong adhesive bonds like metals/alloys in tribological contacts. Typical of these oxides is ZnO. The interest in ZnO is due to its potential for utility in a variety of applications. To this end, nanolaminates of ZnO, Al2O3, ZrO2 thin films have been deposited at varying sequences and thicknesses on silicon substrates and high temperature (M50) bearing steels by atomic layer deposition (ALD). The top lubricious, nanocrystalline ZnO layer was structurally-engineered to achieve low surface energy {0002}-orientated grain that provided low sliding friction coefficients (0.2 to 0.3), wear factors (range of 10-7 to 10-8 mm3/Nm) and good rolling contact fatigue resistance. The Al2O3 was intentionally made amorphous to achieve the {0002} preferred orientation while {101}-orientated tetragonal ZrO2 acted as a high toughness/load bearing layer. It was determined that the ZnO defective structure (oxygen sub-stoichiometric with growth stacking faults) aided in shear accommodation by re-orientating the nanocrystalline grains where they realigned to create new friction-reducing surfaces. Specifically, high resolution transmission electron microscopy (HRTEM) inside the wear surfaces revealed in an increase in both partial dislocation and basal stacking fault densities through intrafilm shear/slip of partial dislocations on the (0002) planes via a dislocation glide mechanism. This shear accommodation mode mitigated friction and prevented brittle fracture classically observed in higher friction microcrystalline and single crystal ZnO that has potential broad implications to other defective nanocrystalline ceramics. Overall, this work has demonstrated that environmentally-robust, lubricious ALD nanolaminates of ZnO/Al2O3/ZrO2 are good candidates for providing low friction and wear interfaces in moving mechanical assembles, such as fully assembled rolling element bearings and microelectromechanical systems (MEMS) that require thin (~10-200 nm), uniform and conformal films. digital.library.unt.edu/ark:/67531/metadc33186/
The Influence of Ohmic Metals and Oxide Deposition on the Structure and Electrical Properties of Multilayer Epitaxial Graphene on Silicon Carbide Substrates
Graphene has attracted significant research attention for next generation of semiconductor devices due to its high electron mobility and compatibility with planar semiconductor processing. In this dissertation, the influences of Ohmic metals and high dielectric (high-k) constant aluminum oxide (Al2O3) deposition on the structural and electrical properties of multi-layer epitaxial graphene (MLG) grown by graphitization of silicon carbide (SiC) substrates have been investigated. Uniform MLG was successfully grown by sublimation of silicon from epitaxy-ready, Si and C terminated, 6H-SiC wafers in high-vacuum and argon atmosphere. The graphene formation was accompanied by a significant enhancement of Ohmic behavior, and, was found to be sensitive to the temperature ramp-up rate and annealing time. High-resolution transmission electron microscopy (HRTEM) showed that the interface between the metal and SiC remained sharp and free of macroscopic defects even after 30 min, 1430 °C anneals. The impact of high dielectric constant Al2O3 and its deposition by radio frequency (RF) magnetron sputtering on the structural and electrical properties of MLG is discussed. HRTEM analysis confirms that the Al2O3/MLG interface is relatively sharp and that thickness approximation of the MLG using angle resolved X-ray photoelectron spectroscopy (ARXPS) as well as variable-angle spectroscopic ellipsometry (VASE) is accurate. The totality of results indicate that ARXPS can be used as a nondestructive tool to measure the thickness of MLG, and that RF sputtered Al2O3 can be used as a (high-k) constant gate oxide in multilayer grapheme based transistor applications. digital.library.unt.edu/ark:/67531/metadc68009/
An Integrated Approach to Determine Phenomenological Equations in Metallic Systems
It is highly desirable to be able to make predictions of properties in metallic materials based upon the composition of the material and the microstructure. Unfortunately, the complexity of real, multi-component, multi-phase engineering alloys makes the provision of constituent-based (i.e., composition or microstructure) phenomenological equations extremely difficult. Due to these difficulties, qualitative predictions are frequently used to study the influence of microstructure or composition on the properties. Neural networks were used as a tool to get a quantitative model from a database. However, the developed model is not a phenomenological model. In this study, a new method based upon the integration of three separate modeling approaches, specifically artificial neural networks, genetic algorithms, and monte carlo was proposed. These three methods, when coupled in the manner described in this study, allows for the extraction of phenomenological equations with a concurrent analysis of uncertainty. This approach has been applied to a multi-component, multi-phase microstructure exhibiting phases with varying spatial and morphological distributions. Specifically, this approach has been applied to derive a phenomenological equation for the prediction of yield strength in a+b processed Ti-6-4. The equation is consistent with not only the current dataset but also, where available, the limited information regarding certain parameters such as intrinsic yield strength of pure hexagonal close-packed alpha titanium. digital.library.unt.edu/ark:/67531/metadc177199/
Laser Modified Alumina: a Computational and Experimental Analysis
Laser surface modification involves rapid melting and solidification is an elegant technique used for locally tailoring the surface morphology of alumina in order to enhance its abrasive characteristics. COMSOL Multiphysics® based heat transfer modeling and experimental approaches were designed and used in this study for single and multiple laser tracks to achieve densely-packed multi-facet grains via temperature history, cooling rate, solidification, scanning electron micrographs, and wear rate. Multi-facet grains were produced at the center of laser track with primary dendrites extending toward the edge of single laser track. The multiple laser tracks study indicates the grain/dendrite size increases as the laser energy density increases resulting in multiplying the abrasive edges which in turn enhance the abrasive qualities. digital.library.unt.edu/ark:/67531/metadc177232/
Maleic anhydride grafted polypropylene coatings on steel: Adhesion and wear.
Polymeric coatings are being used in a growing number of applications, contributing to protection against weather conditions and localized corrosion, reducing the friction and erosion wear on the substrate. In this study, various polypropylene (PP) coatings were applied onto steel substrates by compression molding. Chemical modification of PP has been performed to increase its adhesion to metallic surfaces by grafting of maleic anhydride (MAH) onto PP in the presence of dicumyl peroxide (DCP). Influence of different concentrations of MAH and DCP on the properties of resulting materials have been examined. The coated steel samples are characterized by scanning electron microscopy (SEM), shear adhesion testing, FTIR and tribometry. The coatings with 3 wt. % MAH have shown the maximum adhesion strength due to maximum amount of grafting. The wear rates increased with increasing the amount of MAH due to simultaneous increase in un-reacted MAH. digital.library.unt.edu/ark:/67531/metadc28452/
Mechanisms of Ordered Gamma Prime Precipitation in Nickel Base Superalloys
Commercial superalloys like Rene88DT are used in high temperature applications like turbine disk in aircraft jet engines due to their excellent high temperature properties, including strength, ductility, improved fracture toughness, fatigue resistance, enhanced creep and oxidation resistance. Typically this alloy's microstructure has L12-ordered precipitates dispersed in disordered face-centered cubic γ matrix. A typical industrially relevant heat-treatment often leads to the formation of multiple size ranges of γ¢ precipitates presumably arising from multiple nucleation bursts during the continuous cooling process. The morphology and distribution of these γ′ precipitates inside γ matrix influences the mechanical properties of these materials. Therefore, the study of thermodynamic and kinetic factors influencing the evolution of these precipitates and subsequent effects is both relevant for commercial applications as well as for a fundamental understanding of the underlying phase transformations. The present research is primarily focused on understanding the mechanism of formation of different generations of γ′ precipitates during continuous cooling by coupling scanning electron microscopy (SEM), energy filtered TEM and atom probe tomography (APT). In addition, the phase transformations leading to nucleation of γ′ phase has been a topic of controversy for decades. The present work, for the first time, gives a novel insight into the mechanism of order-disorder transformations and associated phase separation processes at atomistic length scales, by coupling high angle annular dark field (HAADF) - STEM imaging and APT. The results indicate that multiple competing mechanisms can operate during a single continuous cooling process leading to different generations of γ′ including a non-classical mechanism, operative at large undercoolings. digital.library.unt.edu/ark:/67531/metadc67949/
Microstructure Evolution in Laser Deposited Nickel-Titanium-Carbon in situ Metal Matrix Composite
Ni/TiC metal matrix composites have been processed using the laser engineered net shaping (LENS) process. As nickel does not form an equilibrium carbide phase, addition of a strong carbide former in the form of titanium reinforces the nickel matrix resulting in a promising hybrid material for both surface engineering as well as high temperature structural applications. Changing the relative amounts of titanium and carbon in the nickel matrix, relatively low volume fraction of refined homogeneously distributed carbide precipitates, formation of in-situ carbide precipitates and the microstructural changes are investigated. The composites have been characterized in detail using x-ray diffraction, scanning electron microscopy (including energy dispersive spectroscopy (XEDS) mapping and electron backscatter diffraction (EBSD)), Auger electron spectroscopy, and transmission (including high resolution) electron microscopy. Both primary and eutectic titanium carbides, observed in this composite, exhibited the fcc-TiC structure (NaCl-type). Details of the orientation relationship between Ni and TiC have been studied using SEM-EBSD and high resolution TEM. The results of micro-hardness and tribology tests indicate that these composites have a relatively high hardness and a steady-state friction coefficient of ~0.5, both of which are improvements in comparison to LENS deposited pure Ni. digital.library.unt.edu/ark:/67531/metadc33154/
Mist and Microstructure Characterization in End Milling Aisi 1018 Steel Using Microlubrication
Flood cooling is primarily used to cool and lubricate the cutting tool and workpiece interface during a machining process. But the adverse health effects caused by the use of flood coolants are drawing manufacturers' attention to develop methods for controlling occupational exposure to cutting fluids. Microlubrication serves as an alternative to flood cooling by reducing the volume of cutting fluid used in the machining process. Microlubrication minimizes the exposure of metal working fluids to the machining operators leading to an economical, safer and healthy workplace environment. In this dissertation, a vegetable based lubricant is used to conduct mist, microstructure and wear analyses during end milling AISI 1018 steel using microlubrication. A two-flute solid carbide cutting tool was used with varying cutting speed and feed rate levels with a constant depth of cut. A full factorial experiment with Multivariate Analysis of Variance (MANOVA) was conducted and regression models were generated along with parameter optimization for the flank wear, aerosol mass concentration and the aerosol particle size. MANOVA indicated that the speed and feed variables main effects are significant, but the interaction of (speed*feed) was not significant at 95% confidence level. The model was able to predict 69.44%, 68.06% and 42.90% of the variation in the data for both the flank wear side 1 and 2 and aerosol mass concentration, respectively. An adequate signal-to-noise precision ratio more than 4 was obtained for the models, indicating adequate signal to use the model as a predictor for both the flank wear sides and aerosol mass concentration. The highest average mass concentration of 8.32 mg/m3 was realized using cutting speed of 80 Surface feet per minute (SFM) and a feed rate of 0.003 Inches per tooth (IPT). The lowest average mass concentration of 5.91 mg/m3 was realized using treatment 120 SFM and 0.005 IPT. The cutting performance under microlubrication is five times better in terms of tool life and two times better in terms of materials removal volume under low cutting speed and feed rate combination as compared to high cutting speed and feed rate combination. Abrasion was the dominant wear mechanism for all the cutting tools under consideration. Other than abrasion, sliding adhesive wear of the workpiece materials was also observed. The scanning electron microscope investigation of the used cutting tools revealed micro-fatigue cracks, welded micro-chips and unusual built-up edges on the cutting tools flank and rake side. Higher tool life was observed in the lowest cutting speed and feed rate combination. Transmission electron microscopy analysis at failure for the treatment 120 SFM and 0.005 IPT helped to quantify the dislocation densities. Electron backscatter diffraction (EBSD) identified 4 to 8 µm grain size growth on the machined surface due to residual stresses that are the driving force for the grain boundaries motion to reduce its overall energy resulting in the slight grain growth. EBSD also showed that (001) textured ferrite grains before machining exhibited randomly orientated grains after machining. The study shows that with a proper selection of the cutting parameters, it is possible to obtain higher tool life in end milling under microlubrication. But more scientific studies are needed to lower the mass concentration of the aerosol particles, below the recommended value of 5 mg/m3 established by Occupational Safety and Health Administration (OSHA). digital.library.unt.edu/ark:/67531/metadc283858/
Molecular Dynamics Simulations of the Structures of Europium Containing Silicate and Cerium Containing Aluminophosphate Glasses
Rare earth ion doped glasses find applications in optical and photonic devices such as optical windows, laser, and optical amplifiers, and as model systems for immobilization of nuclear waste. Macroscopic properties of these materials, such as luminescence efficiency and phase stability, depend strongly on the atomic structure of these glasses. In this thesis, I have studied the atomic level structure of rare earth doped silicate and aluminophosphate glasses by using molecular dynamics simulations. Extensive comparisons with experimental diffraction and NMR data were made to validate the structure models. Insights on the local environments of rare earth ions and their clustering behaviors and their dependence on glass compositions have been obtained. In this thesis, MD simulations have been used to investigate the structure of Eu2O3-doped silica and sodium silicate glasses to understand the glass composition effect on the rare earth ions local environment and their clustering behaviors in the glass matrix, for compositions with low rare earth oxide concentration (~1mol%). It was found that Eu–O distances and coordination numbers were different in silica (2.19-2.22 Å and 4.6-4.8) from those in sodium silicate (2.32 Å and 5.8). High tendencies of Eu clustering and short Eu-Eu distances in the range 3.40-3.90 Å were observed in pure silica glasses as compared to those of silicate glasses with much better dispersed Eu3+ ions and lower probability to form clusters. The results show Eu3+ clustering behavior dependence on the system size and suggest for low doping levels, over 12,000 atoms to obtain statistical meaningful results on the local environment and clustering for rigid silica-based glasses. The structures of four cerium aluminophosphate glasses have also been studied using MD simulations for systems of about 13,000 atoms to investigate aluminum and cerium ion environment and their distribution. P5+ and Al3+ local structures were found stable while those of Ce3+ and Ce4+ ions, through their coordination numbers and bond lengths, are glass composition-dependence. Cerium clusters were found in the high cerium glasses.P5+ coordination numbers around cerium revealed the preference of phosphorus ions in the second coordination shell. Total structure factors from MD simulations and experimental diffraction results show a general agreement from comparison for all the cerium aluminophosphate glasses and with compositional changes up to 25 Å-1. Aluminum enters the phosphate glass network mainly as AlO4 and AlO5 polyhedra only connected through corner sharing to PO4 tetrahedra identified by Q11(1 AlOx), Q12(2 AlOx), Q21(1 AlOx), and Q22(2 AlOx) species. digital.library.unt.edu/ark:/67531/metadc149624/
Phase Separation and Second Phase Precipitation in Beta Titanium Alloys
The current understanding of the atomic scale phenomenon associated with the influence of beta phase instabilities on the evolution of microstructure in titanium alloys is limited due to their complex nature. Such beta phase instabilities include phase separation and precipitation of nano-scale omega and alpha phases in the beta matrix. The initial part of the present study focuses on omega precipitation within the beta matrix of model binary titanium molybdenum (Ti-Mo) alloys. Direct atomic scale observation of pre-transition omega-like embryos in quenched alloys, using aberration-corrected high resolution scanning transmission electron microscopy and atom probe tomography (APT) was compared and contrasted with the results of first principles computations performed using the Vienna ab initio simulation package (VASP) to present a novel mechanism of these special class of phase transformation. Thereafter the beta phase separation and subsequent alpha phase nucleation in a Ti-Mo-Al ternary alloy was investigated by coupling in-situ high energy synchrotron x-ray diffraction with ex-situ characterization studies performed using aberration corrected transmission electron microscopy and APT to develop a deeper understanding of the mechanism of transformation. Subsequently the formation of the omega phase in the presence of simultaneous development of compositional phase separation within the beta matrix phase of a Ti-10V-6Cu (wt%) alloy during continuous cooling has been investigated using a combination of transmission electron microscopy and atom probe tomography. The results of these investigations provided novel insights into the mechanisms of solid-state transformations in metallic systems by capturing the earliest stages of nucleation at atomic to near atomic spatial and compositional resolution. digital.library.unt.edu/ark:/67531/metadc67975/
Piezoresistive Polyvinylidene Fluoride/Carbon Filled Nanocomposites
This thesis examines the value of using dispersed conductive fillers as a stress/strain sensing material. The effect of the intrinsic conductivity of the filler on the ability to be effective and the influence of filler concentration on the conductivity are also examined. To meet these objectives, nanocomposites of polyvinylidene fluoride (PVDF) with carbon nanofibers (CNFs) and carbon nanotubes (CNTs) were prepared by melt-blending using a twin screw extruder. Since PVDF has a potential to be piezoresistive based on the type of crystalline phase, the effect of CNFs on PVDF crystallinity, crystalline phase, quasi static and dynamic mechanical property was studied concurrently with piezoresponse. Three time dependencies were examined for PVDF/CNTs nanocomposites: quasi-static, transient and cyclic fatigue. The transient response of the strain with time showed viscoelastic behavior and was modeled by the 4-element Burger model. Under quasi-static loading the resistance showed negative pressure coefficient below yield but changed to a positive pressure coefficient after yield. Under cyclic load, the stress-time and resistance-time were synchronous but the resistance peak value decreased with increasing cycles, which was attributed to charge storage in the nanocomposite. The outcomes of this thesis indicate that a new piezoresponsive system based on filled polymers is a viable technology for structural health monitoring. digital.library.unt.edu/ark:/67531/metadc68059/
Scratch Modeling of Polymeric Materials with Molecular Dynamics
It is impossible to determine the amount of money that is spent every replacing products damaged from wear, but it is safe to assume that it is in the millions of dollars. With metallic materials, liquid lubricants are often used to prevent wear from materials rubbing against one another. However, with polymeric materials, liquid lubricants cause swelling, creating an increase in friction and therefore increasing the wear. Therefore, a different method or methods to mitigate wear in polymers should be developed. For better understanding of the phenomenon of wear, scratch resistance testing can be used. For this project, classic molecular dynamics is used to study the mechanics of nanometer scale scratching on amorphous polymeric materials. As a first approach, a model was created for polyethylene, considering intramolecular and intermolecular interactions as well as mass and volume of the CH2 monomers in a polymer chain. The obtained results include analysis of penetration depth and recovery percentage related to indenter force and size. digital.library.unt.edu/ark:/67531/metadc149608/
Solid Lubrication Mechanisms in Laser Deposited Nickel-titanium-carbon Metal Matrix Composites
A Ni/TiC/C metal matrix composite (MMC) has been processed using the laser engineered net shaping (LENS) process from commercially available powders with a Ni-3Ti-20C (atomic %) composition. This processing route produces the in-situ formation of homogeneously distributed eutectic and primary titanium carbide and graphite precipitates throughout the Ni matrix. The composite exhibits promising tribological properties when tested in dry sliding conditions with a low steady state coefficient of friction (CoF) of ~0.1 and lower wear rates in comparison to LENS deposited pure Ni. The as deposited and tribologically worn composite has been characterized using Auger electron spectroscopy, scanning electron microscopy (SEM), X-ray diffraction, high resolution transmission electron microscopy (HRTEM) with energy dispersive spectroscopy (EDS), dual beam focused ion beam SEM (FIB/SEM) serial sectioning and Vickers micro-hardness testing. The evolution of subsurface stress states and precipitate motion during repeated sliding contact has been investigated using finite element analysis (FEA). The results of FIB/SEM serial sectioning, HRTEM, and Auger electron spectroscopy in conjunction with FEA simulations reveal that the improved tribological behavior is due to the in-situ formation of a low interfacial shear strength amorphous carbon tribofilm that is extruded to the surface via refined Ni grain boundaries. digital.library.unt.edu/ark:/67531/metadc271864/
A Study of Mechanisms to Engineer Fine Scale Alpha Phase Precipitation in Beta Titanium Alloy, Beta 21S
Metastable b-Ti alloys are titanium alloys with sufficient b stabilizer alloying additions such that it's possible to retain single b phase at room temperature. These alloys are of great advantage compared to a/b alloys since they are easily cold rolled, strip produced and can attain excellent mechanical properties upon age hardening. Beta 21S, a relatively new b titanium alloy in addition to these general advantages is known to possess excellent oxidation and corrosion resistance at elevated temperatures. A homogeneous distribution of fine sized a precipitates in the parent b matrix is known to provide good combination of strength, ductility and fracture toughness. The current work focuses on a study of different mechanisms to engineer homogeneously distributed fine sized a precipitates in the b matrix. The precipitation of metastable phases upon low temperature aging and their influence on a precipitation is studied in detail. The precipitation sequence on direct aging above the w solvus temperature is also assessed. The structural and compositional evolution of precipitate phase is determined using multiple characterization tools. The possibility of occurrence of other non-classical precipitation mechanisms that do not require heterogeneous nucleation sites are also analyzed. Lastly, the influence of interstitial element, oxygen on a precipitation during the oxidation of Beta 21S has been determined. The ingress of oxygen and its influence on microstructure have also been correlated to measured mechanical properties. digital.library.unt.edu/ark:/67531/metadc283838/
Tribological Improvements of Carbon-Carbon Composites by Infiltration of Atomic Layer Deposited Lubricious Nanostructured Ceramic Oxides
A number of investigators have reported enhancement in oxidation and wear resistant of carbon-carbon composites (CCC) in the presence of protective coating layers. However, application of a surface and subsurface coating system that can preserve its oxidation and wear resistance along with maintaining lubricity at high temperature remains unsolved. To this end, thermodynamically stable protective oxides (ZnO/Al2O3/ZrO2) have been deposited by atomic layer deposition (ALD) to infiltrate porous CCC and graphite foams in order to improve the thermal stability and wear resistance in low and high speed sliding contacts. Characterization of microstructural evolution was achieved by using energy dispersive x-ray spectroscopy (EDS) mapping in scanning electron microscope (SEM) coupled with focused ion beam (FIB), x-ray tomography, high resolution transmission electron microscopy (HRTEM), scanning transmission electron microscopy (STEM) and X-ray diffraction (XRD). Evaluation of the tribological properties of CCC coated with abovementioned ALD thin films were performed by employing low speed pure sliding tribometer and a high speed/frequency reciprocating rig to simulate the fretting wear behavior at ambient temperature and elevated temperatures of 400°C.It was determined with x-ray tomography imaging and EDS mapping that ALD ZnO/Al2O3/ZrO2 nanolaminates and baseline ZrO2 coatings exhibited excellent conformality and pore-filling capabilities down to ~100 μm and 1.5 mm in the porous CCC and graphite foam, respectively, which were dependent on the exposure time of the ALD precursors. XRD and HRTEM determined the crystalline phases of {0002} textured ZnO (wurtzite), amorphous Al2O3, and {101}-tetragonal ZrO2. Significant improvements up to ~65% in the sliding and fretting wear factors were determined for the nanolaminates in comparison to the uncoated CCC. A tribochemical sliding-induced mechanically mixed layer (MML) was found to be responsible for these improvements. HRTEM confirmed the presence of a high density of ZnO shear-induced basal stacking faults inside the wear tracks responsible for intrafilm shear velocity accommodation that mitigated friction and wear. digital.library.unt.edu/ark:/67531/metadc84254/
Void Growth and Collapse in a Creeping Single Crystal
Aircraft engine components can be subjected to a large number of thermo-mechanical loading cycles and to long dwell times at high temperatures. In particular, the understanding of creep in single crystal superalloy turbine blades is of importance for designing more reliable and fuel efficient aircraft engines. Creep tests on single crystal superalloy specimens have shown greater creep strain rates for thinner specimens than predicted by current theories. Therefore, it is necessary to develop a more predictive description of creep processes in these materials for them to be used effectively. Experimental observations have shown that the crystals have an initial porosity and that the progressive growth of these voids plays a major role in limiting creep life. In order to understand void growth under creep in single crystals, we have analyzed the creep response of three dimensional unit cells with a single spherical void under different types of isothermal creep loading. The growth behavior of the void is simulated using a three dimensional rate dependent crystal plasticity constitutive relation in a quasi-static finite element analysis. The aim of the present work is to analyze the effect of stress traixiality and Lode parameter on void growth under both constant true stress and constant engineering stress isothermal creep loading. digital.library.unt.edu/ark:/67531/metadc84281/