Search Results

Expression of Granulocyte-Macrophage Colony-Stimulating Factor Gene in Insect Cells by a Baculovirus Vector
The focus of this research is to describe the production and characterization of the human granulocyte-macrophage colony-stimulating factor (hGM-CSF) in insect cells, using Autographa californica buclear polyhedrosis virus (AcNPV) as an expression vector. All three forms of biological activity of hGM-CSF. Following N-glycanase treatment, the two glycosylated hGM-CSF proteins (15.5 and 16.5 KDa) which bound to Concanavalin A affinity column ran as a 14.5-15.5 KDa band on SDS-PAGE. Western blot analysis of expression in Sf9 cells treated with tunicamycin revealed only the presence of the 14.5 KDa species. The N-terminal amino acid sequence of the recombinant hGM-CSF was identical to that of natural hGM-CSF deduced from cDNA. These results demonstrate that baculovirus-produced hGM-CSF could be N-glycosylated in Sf9 cells, the signal peptide of recombinant hGM-CSF could be recognized and cleaved by infected insect cells and the resultant molecule secreted into the medium.
Electrophysiological and Morphological Analyses of Mouse Spinal Cord Mini-Cultures Grown on Multimicroelectrode Plates
The electrophysiological and morphological properties of small networks of mammalian neurons were investigated with mouse spinal cord monolayer cultures of 2 mm diameter grown on multimicroelectrode plates (MMEPs). Such cultures were viewed microscopically and their activity simultaneously recorded from 2 of any 36 fixed recording sites. The specific aims achieved were: development of techniques for production of functional MMEPs and maintenance of mini-cultures, characterization of the spontaneous activity of mini-cultures, application of inhibitory and disinhibitory agents, development of staining methods for cultured neurons and initial light microscopic analysis with correlation of electrophysiological and morphological characteristics.
Posttranslational Modification of Proteins by ADP-ribosylation
This work presents the development of a highly sensitive and selective chemical assay for mono(ADP-ribose) residues covalently bound to proteins in vivo. An extensive review of the literature is presented in the introduction of this work. The physiological.functions of mono(ADP-ribosyl)transferase activities associated with certain bacterial toxins (e.g., diphtheria, cholera and pertussis toxins) are well established. However, the roles of endogenous vertebrate transferases are unknown. The elucidation of the roles of these cellular transferases will likely require identification of the physiologically relevant target proteins. Toward this end, it will also be important to identify the types of (ADP-ribose)-protein linkages present in vivo. ADP-ribosylation reactions catalyzed by the different bacterial and vertebrate transferases are specific for different amino acid acceptors in vitro. However, the vertebrate transferases that have been characterized thus far are NAD:arginine mono(ADP-ribosyl)transferases. The work presented here describes the development of a chemical assay for the detection of in vivo modified, ADP-ribosylated proteins containing N-glycosylic linkages to arginine. The assay was applied to the analysis of ADP-ribose residues in adult rat liver. The strategy employed for detection of protein-bound ADP-ribose residues eliminated potential artifacts arising from trapped nucleotides (or their degradation products), since the acid-insoluble material was completely dissolved in a strongly denaturing solution and freed of non-covalently bound nucleotides prior to chemical release from proteins. Thus, the studies presented here demonstrate the unambiguous detection and quantification of protein-bound ADP-ribose residues in adult rat liver. "Arginine-linked" mono(ADP-ribose) residues (31.8 pmol/mg protein) were present in vivo at a level almost 400-fold higher than poly(ADP-ribose). A minor fraction (23%) of the ADP—ribose residues detected were bound via a second more labile linkage with chemical properties very similar to those described previously for carboxlylate esterlinked ADP-ribose. After fractionation of rat liver proteins by gel filtration HPLC, the major peak of "arginine-linked" ADP-ribose residues …
Postsynthetic Modifications of Glycolytic Enzymes of the Geriatric Immune System and in Fibroblasts from Premature Aging Diseases
During mitogen-induced transformation of human lymphocytes, phosphoglycerate kinase (PGK) exhibits new electrophoretic forms (pl=8.5-8.9). Electrophoresis and electrofocusing showed that the new forms are not due to expression of the autosomally linked isozyme found in semen (PGK-B; pl=9.7). The multiple electrophoretic forms are the result of protease modification of sex-linked PGK-A isozyme.When peripheral lymphocytes from young persons are stimulated in vitro with phytohemagglutinin, a selective increase in the levels of the glycolytic enzymes occurs concomitantly with blastogenesis. Human lymphocytes from a geriatric population were also subjected to mitogen stimulation. The initial levels of the enzymes were essentially identical in lymphocytes from young and old subjects as were mitogenfree cultured controls. However, during mitogen stimulation the cells from the old subjects failed to increase the glycolytic enzymes. This inability to activate glycolysis may be related to the decline in cell-mediated immunity which occurs with advancing age. Triosephosphate isomerase (TPI) has an increased thermolabile component in skin fibroblasts from patients with progeria (41.4 per cent)and Werner's syndrome (20.1 per cent) when compared with normal fibroblasts (0-3 per cent). The incorporation of various protease inhibitors failed to affect the percentages of heat-labile triosephosphate isomerases. The labile component appears to be identical to the deamidated form of the enzyme which accumulates in other aging cells. Isoelectric focusing demonstrated increased quantities of the deamidated TPI-A form in progeria and Werner's syndrome fibroblasts as compared to normal. The deamidated TPI-A was considerably more labile than the native TPI-B indicating the increased lability of triosephosphate isomerase in premature aging syndrome fibroblasts is due to an accumulation of the deamidated form of the enzyme. The levels of several proteases were found to be diminished in progeria fibroblast extracts as compared to normal. A deamidation mechanism of enzyme degradation plays a key role in the normal cellular catabolism of this …
Back to Top of Screen