Search Results

Degradation Mechanisms and Dynamics of Silicon Telluride: A Guide to the Effective Fabrication and Characterization of Silicon Telluride-Based Devices
Silicon telluride (Si2Te3) and many other tellurium containing compounds show emergent Raman peaks located at ~120 cm-1 and ~140 cm-1 as they age. The origin of these two emergent peaks is controversial in the literature and has been attributed to myriad causes such as the intrinsic Raman modes of the telluride materials, surface oxidation, defects, double resonances, and tellurium precipitates. The controversial nature of these peaks has led to the misidentification of highly degraded materials as pristine and to the misinterpretation of changes in Raman spectra. For the first time, quality thin film and bulk crystals of Si2Te3 are grown using a chemical vapor deposition (CVD) process. We then present a comprehensive and multimodal study of various Si2Te3 samples and find that the two emergent Raman peaks originate from tellurium nano-crystallites formed in the degraded surface layers of Si2Te3. The formation of the tellurium nano-crystallites are shown to be a result of a hydrolysis process in which Si2Te3 reacts with atmospheric water vapor. The challenges involved in the fabrication of Si2Te3 based devices are also discussed and ways in which degradation can be either prevented or reversed are demonstrated. Finally, we present preliminary data which shows promising low voltage switching behavior in Si2Te3 memory devices.
Transport of Proton, Hydrogen and Alpha Particles through Atomic Hydrogen Environment
Using multiple theoretical methods, comprehensive calculations are performed to create a new and more comprehensive data set for elastic scattering and related transport cross sections for collisions of (H$^+$ + H), (H + H) and (He$^{2+}$ + H) in the center-of-mass energy frame. In proton-atomic hydrogen collisions, we have significantly updated and extended previous work of elastic scattering, charge transfer and related transport integral and differential cross sections in the center-of-mass energy range $10^{-4} - 10^4$ eV where the multi-channel molecular orbital approach (MO3) is used. For atomic hydrogen-hydrogen collisions, similar updates have been made of elastic scattering and spin exchange differential and integral cross sections, also for the H + H collision the ionization and negative ion formation cross sections are provided in energy range (1-20 KeV) by use of the 'hidden crossing' theoretical framework. For collisions of alpha particles with atomic hydrogen we have computed the elastic scattering cross section in the center-of-mass energy range $10^{-4} - 10^8$ eV. In this case, at the lowest energies where elastic scattering greatly dominates other reaction channels, a single-channel quasi-molecular-orbital approach (MO1) is used. With the opening of inelastic channels at higher energies the multi-channel atomic-orbital, close-coupling method is applied, and at the highest energies considered perturbation theory (the Born approximation) is used. The results are compared with other data available in literature.
Extending the Capabilities of Continuum Embeddings in First-Principle Simulations of Materials
In recent years, continuum models of solvation have had exceptional success in materials simulations as well as condensed matter physics. They can easily capture the effects of disordered systems, such as neutral liquids or electrolytes solutions, on material interfaces without the need for expensive statistical sampling. The Environ library (www.quantum-environ.org) implements different continuum models and correction schemes, which is the focus of this presentation. Recently refactored into a stand-alone library, many changes have been introduced in Environ, making it more flexible and computationally efficient. Introduction of a double-cell formalism allows for faster ab initio DFT calculations while reparameterization of soft-sphere continuum model allows for smaller density cutoffs. Furthermore, Environ's periodic boundary conditions correction schemes have been expanded by including the AFC90 library, which allows for faster DFT calculations of partially periodic systems, such as slabs, wires, and isolated molecules. Finally, stand-alone Environ can now provide atomic and molecular descriptors, which can be used to characterize solvated interfaces, e.g. in machine learning applications. The specific details of the implementations are reviewed as well as their efficiency and some choice applications for different calculation setups and systems.
Near-Infrared Spectroscopy of High Redshift Quasars: Bringing Distant Quasars into View
The Gemini Near Infrared Spectrograph - Distant Quasar Survey (GNIRS-DQS) is the largest uniform, homogeneous survey of its kind, covering 260 quasars at 1.5 ≤ z ≤ 3.5. This unique survey, coupled with data from the Sloan Digital Sky Survey (SDSS), enables new investigations into redshifts, supermassive black hole masses (MBH), and accretion rates at high redshift through spectroscopic coverage of important rest-frame UV-optical emission lines. The importance of this survey is highlighted in the fact that the optical emission lines provide more reliable measurements of these quasar parameters than their UV counterpart. With such a unique sample compiled here, I construct prescriptions to calibrate these quasar parameters derived from rest-frame UV emission lines to those derived from rest-frame optical emission lines. These prescriptions provide important insight into how these parameters depend on redshift and are potentially biased as we look out further into the universe. Additionally, all the work completed with this sample will help shape our understanding of how these quasars and their host galaxies co-evolve over cosmic time.
Placing High-Redshift Quasars in Perspective: Unifying Distant Quasars with Their Lower Redshift Counterparts through Near-Infrared Spectroscopy
I present spectroscopic measurements for 260 sources from the Gemini Near Infrared Spectrograph–Distant Quasar Survey (GNIRS-DQS). Being the largest uniform, homogeneous survey of its kind, it represents a flux-limited sample of Sloan Digital Sky Survey (SDSS) quasars at 1.5 < z < 3.5. A combination of the GNIRS and SDSS spectra covers principal quasar diagnostic features, chiefly the C IV λ1549, Mg II λλ2798, 2803, Hβ λ4861, and [O III] λλ4959, 5007 emission lines, in each source. The spectral inventory is utilized primarily to develop prescriptions for obtaining more accurate and precise redshifts, black hole masses, and accretion rates for all quasars. Additionally, the measurements facilitate an understanding of the dependence of rest-frame ultraviolet–optical spectral properties of quasars on redshift, luminosity, and Eddington ratio, and test whether the physical properties of the quasar central engine evolve over cosmic time.
Twisted Moire Photonic Crystals: Their Nano-Fabrications, Optical Properties, and Applications in Light Extraction
In this dissertation, I report the results of my research on twisted moiré photonic crystals which can be formed through multi-beam holographic interference without a physical rotation and later fabricated by electron-beam lithography. Their optical properties, such as photonic bandgaps, multiple resonance modes, and quality factor are presented. Randomized moire photonic crystals in lattice are also studied. The applications of moire photonic crystals in improving light extraction efficiency are simulated and verified in light emitting devices. Furthermore, I simulated the light extraction efficiency in OLED when the Al layer is patterned with a triangular GPSC, square moiré PhC with defects in the uniform area, and random locations of the photonic lattice, and obtain light extraction efficiency of 78.9%, 79.9%, 81.7%, respectively. Also, the ratios of photoluminescence intensity of LED integrated with twisted moiré PhCs and random moiré PhCs over that without moiré PhCs are measured to be (1.3-1.9) and 1.74, respectively, in a good agreement with simulated ratios of 1.69 and 1.8.
Investigating Accretion Mechanisms and Host Galaxy Environments of z~4 Quasars
Observations of quasars at the highest accessible redshifts have revealed supermassive black holes (SMBHs) with masses much too massive to be accounted for by the growth mechanisms observed in the local universe. Masses up to 10 10 M ⊙ up to z~7 seem to suggest some type of secular evolution or external influence to feed the earliest SMBHs at extremely high rates. Observations at such redshifts come at expensive technical cost and require significant dedicated space-telescope observing time. However, in the z~4 regime, SMBHs are still relatively young, exhibit extreme growth rates, and are economically accessible for both frequent shallow snapshots as well as deep observations. In this dissertation, the accretion mechanisms of z~4 quasars and the structure of their host galaxies and nearby companions are investigated to search for evolution over cosmic time as well as outside influence on star formation rates (SFRs) and SMBH growth. Building the longest available X-ray light curves of four representative radio-quiet quasars, X-ray variability is evaluated at timescales from days to years in the rest frame, and robust simulations allow both qualitative and quantitate measurements of variability to compare with samples at lower redshifts. At all timescales, X-ray variability is consistent with or lower than lower-redshift samples and no evolution is observed. To investigate regions outside the central quasar, deep rest-frame UV observations of six similar quasars whose hosts exhibit highly varying SFRs are used to map the structure of star forming regions in the host galaxy and investigate the sky density of nearby sources. Despite the suggested hypothesis that major galactic mergers influence high SFRs, no evidence of merger scenarios is shown in the high-SFR sources, and the lower-SFR, which were thought to reside in sparse environments, also reside in dense environments.
Optical Control of Coherent Quantum Systems
Optical control of coherent quantum systems has many methods and applications. In this defense we will discuss the effects of an electric field interacting with molecules with dipole moments. The theoretical study of such molecules will consist of two-level atom and a three-level atom in the λ configuration. The methods that will be discussed are population trapping using both bright and dark starts obtained by both STIRAP and CHIRAP pulses. The application to be discussed is how to create a room temperature maser.
Ultrasonic Wave Propagation and Localization in a Nonreciprocal Phononic Crystal
Ultrasonic wave propagation through a two-dimensional nonreciprocal phononic crystal with asymmetric aluminum rods in viscous water is studied for its application in Anderson localization and trapping of acoustic energy. A one-dimensional disorder in the otherwise 2D periodic crystal is introduced by disorienting the asymmetric rods along the rows and by keeping them equally oriented along the columns. An exponential decay of sound waves travelling along the direction of disorder is observed demonstrating Anderson localization whereas sound propagates as extended wave along the ordered direction. Localization length for the case of strong disorder with high randomness in the orientation of rods and weak disorder with weak fluctuations in the orientation of rods is evaluated. The degree of randomness in the orientation of the rods controls the localization length of the wave. Thouless's theoretical prediction for the scaling of Lyapunov exponent with disorder is experimentally observed for weak disorder at frequency in the transmission band and anomalous scaling is observed for band edge frequency. Transmission spectra of acoustic waves is also measured for opposite direction of propagation and nonreciprocity is observed for the exponentially weak transmission in the disordered direction as well as for extended states in the ordered direction. Breaking of reciprocity in the current structure is due to the broken PT symmetry. The T symmetry or the time reversal symmetry is broken by the viscous dissipation at the boundaries of scatterers and the water, and the P symmetry is broken by the asymmetric shape of the rods. Acoustic energy trapping inside a nonreciprocal phononic crystal cavity is studied by creating three configurations of cavities. These configurations are based on the orientation of the asymmetric scatterers on each side of the cavity. Only one of these configuration utilizes the nonreciprocal property of the structure. Enhancement of energy trapping in the cavity …
Developing Ultra-Fast Plasmonic Spiking Neuron via Integrated Photonics
This research provides a proof of concept and background theory for the physics behind the state-of-the-art ultra-fast plasmonic spiking neurons (PSN), which can serve as a primary synaptic device for developing a platform for fast neural computing. Such a plasmonic-powered computing system allows localized AI with ultra-fast operation speed. The designed architecture for a plasmonic spiking neuron (PSN) presented in this thesis is a photonic integrated nanodevice consisting of two electro-optic and optoelectronic active components and works based on their coupling. The electro-optic active structure incorporated a periodic array of seeded quantum nanorods sandwiched between two electrodes and positioned at a near-field distance from the topmost metal layer of a sub-wavelength metal-oxide multilayer metamaterial. Three of the metal layers of the metamaterials form the active optoelectronic component. The device operates based on the coupling of the two active components through optical complex modes supported by the multilayer and switching between two of them. Both action and resting potentials occur through subsequent quantum and extraordinary photonics phenomena. These phenomena include the generation of plasmonic high-k complex modes, switching between the modes by enhanced quantum-confined stark effect, decay of the plasmonic excitations in each metal layer into hot-electrons, and collecting hot-electrons by the optoelectronic component. The underlying principles and functionality of the plasmonic spiking neuron are illustrated using computer simulation.
Scaling, Power-Law First Return Times, and Non-Ergodicity
This dissertation is a collection of papers on anomalous phenomena in physics, biology, and sociology. These phenomena are primarily analyzed in terms of their temporal and spatiotemporal statistical properties. The analysis is based on both numerical simulations and, in some cases, real-world physiological and sociological data. The primary methods of analysis are diffusion entropy analysis, power spectral analysis, multifractal analysis, and survival (or waiting-time) analysis.
Band Theory and Beyond: Applications of Quantum Algorithms for Quantum Chemistry
In the past two decades, myriad algorithms to elucidate the characteristics and dynamics of molecular systems have been developed for quantum computers. In this dissertation, we explore how these algorithms can be adapted to other fields, both to closely related subjects such as materials science, and more surprising subjects such as information theory. Special emphasis is placed on the Variational Quantum Eigensolver algorithm adapted to solve band structures of a periodic system; three distinct implementations are developed, each with its own advantages and disadvantages. We also see how unitary quantum circuits designed to model individual electron excitations within a molecule can be modified to prepare a quantum states strictly orthogonal to a space of known states, an important component to solve problems in thermodynamics and spectroscopy. Finally, we see how the core behavior in several quantum algorithms originally developed for quantum chemistry can be adapted to implement compressive sensing, a protocol in information theory for extrapolating large amounts of information from relatively few measurements. This body of work demonstrates that quantum algorithms developed to study molecules have immense interdisciplinary uses in fields as varied as materials science and information theory.
Defect Modulated Properties of Molybdenum Disulfide Monolayer Films
In this dissertation work, the study focuses on large areal growth of MoS2 monolayers and a study of the structural, optical and electrical properties of such monolayers before and after transfer using a polymer-lift off technique. This work will discuss the issue of contact resistance and the effect of defects (both intrinsic and extrinsic) on the overall quality of the monolayer films. The significance of this dissertation work is that a reproducible strategy for monolayer MoS2 film growth and quantification of areal coverage as well as the detrimental effects of processing on device performance is presented.
Ionized Molecular Hydrogen Confinement Using Electron Space-Charge: A Plasma Trap
An ion trap has been constructed that creates a potential well suitable for confining ions with the space charge of an electron cloud. The trap uses the concept of artificially structured boundaries, regions of overlapping electric and magnetic fields, to confine particles in a relatively field free volume. Measurements are presented from the build-up of ionized molecular hydrogen over time. Molecular hydrogen is introduced into the confinement volume by direct electron bombardment ionization of neutral background H2 leaked into the trap. Detailed analysis of the data is conducted using particle-in-cell simulations of trap operation and rate mechanics analysis. Pressure dependent estimates of ion lifetimes in the trap are on the order of milliseconds. Along with discussion of the trap a full introduction to the particle-in-cell technique is conducted through an original code implementation.
Nonreciprocal and Non-Spreading Transmission of Acoustic Beams through Periodic Dissipative Structures
Propagation of a Gaussian beam in a layered periodic structure is studied analytically, numerically, and experimentally. It is demonstrated that for a special set of parameters the acoustic beam propagates without diffraction spreading. This propagation is also accompanied by negative refraction of the direction of phase velocity of the Bloch wave. In the study of two-dimensional viscous phononic crystals with asymmetrical solid inclusions, it was discovered that acoustic transmission is nonreciprocal. The effect of nonreciprocity in a static viscous environment is due to broken PT symmetry of the system as a whole. The difference in transmission is caused by the asymmetrical transmission and dissipation. The asymmetrical transmission is caused solely by broken mirror symmetry and could appear even in a lossless system. Asymmetrical dissipation of sound is a time-irreversible phenomenon that arises only if both energy dissipation and broken parity symmetry are present in the system. The numerical results for both types of phononic crystals were verified experimentally. Proposed devices could be exploited as collimation, rectification, and isolation acoustic devices.
Ongoing Developments on Continuum Solvation Models
This work explores a continuum representation for diffuse layer models, thereby endowing continuum embedding models the ability to capture electrostatic phenomena in the environment such as the existence of electrolyte ions, and the nature of ionic liquids. It introduces a new field-aware continuum model that adjusts the size of the quantum regime per atom based on the distribution of charge in a system. The model accounts for the asymmetric nature of solvent distribution when applied to cations versus anions; it also overcomes the need to parameterize continuum interface models for different charged systems. The continuum representation of cavitation in water does not account for the tendency for water to form a hydrogen bonding network that is broken due to the formation of cavities. This effect is a major contributor to hydrophobic solvation and is an important precondition to the investigation of solvated proteins with continuum embedding. A new model inspired by machine learning advances is trained on molecular dynamics simulations due to the difficulty of isolating the cavitation energy term in experiment. Thermodynamic integration is used to calculate the energy from a step-like repulsive potential from cavities in TIP4P water, cavities ranging from small organic molecules, to small proteins. Predictions from this new model show a small improvement for small molecules and scale much better with respect to the size of the system.
Relaxation Time Approximations in PAOFLOW 2.0
Electronic transport properties have been used to classify and characterize materials and describe their functionality. Recent surge in computational power has enabled computational modelling and accelerated theoretical studies to complement and accelerate experimental discovery of novel materials. This work looks at methods for theoretical calculations of electronic transport properties and addresses the limitations of a common approximation in the calculation of these properties, namely, the constant relaxation time approximation (CRTA). This work takes a look at the limitations of this approximation and introduces energy and temperature dependent relaxation times. This study is carried out on models and real systems and compared with experiments.
Computational Techniques for Accelerated Materials Discovery
Increasing ubiquity of computational resources has enabled simulation of complex electronic systems and modern materials. The PAOFLOW software package is a tool designed to construct and analyze tight binding Hamiltonians from the solutions of DFT calculations. PAOFLOW leverages localized basis sets to greatly reduce computational costs of post-processing QE simulation results, enabling efficient determination of properties such as electronic density, band structures in the presence of electric or magnetic fields, magnetic or spin circular dichroism, spin-texture, Fermi surfaces, spin or anomalous Hall conductivity (SHC or AHC), electronic transport, and more. PAOFLOW's broad functionality is detailed in this work, and several independent studies where PAOFLOW's capabilities directly enabled research on promising candidates for ferroelectric and spintronic based technologies are described. Today, Quantum computers are at the forefront of computational information science. Materials scientists and quantum chemists can use quantum computers to simulate interacting systems of fermions, without having to perform the iterative methods of classical computing. This dissertation also describes a study where the band structure for silicon is simulated for the first time on quantum hardware and broadens this concept for simulating band structures of generic crystalline structures on quantum machines.
Information and Self-Organization in Complex Networks
Networks that self-organize in response to information are one of the most central studies in complex systems theory. A new time series analysis tool for studying self-organizing systems is developed and demonstrated. This method is applied to interacting complex swarms to explore the connection between information transport and group size, providing evidence for Dunbar's numbers having a foundation in network dynamics. A complex network model of information spread is developed. This network infodemic model uses reinforcement learning to simulate connection and opinion adaptation resulting from interaction between units. The model is applied to study polarized populations and echo chamber formation, exploring strategies for network resilience and weakening. The model is straightforward to extend to multilayer networks and networks generated from real world data. By unifying explanation and prediction, the network infodemic model offers a timely step toward understanding global collective behavior.
Towards Increased Precision of the 4He:23P1→23P2 Transition Measurement Using Laser Spectroscopy
Significant sub-systems were created and others enhanced providing a platform for an order of magnitude precision increase of the small 4He interval - 23P1→23P2 laser spectroscopy measurement, as well as other helium transitions. These measurements serve as tests of helium theory and quantum electro-dynamics in general. Many improvements to the original experiment are discussed and characterized. In particular, counting speed increased 10x, the signal level was doubled, a novel Doppler shift minimization technique was implemented, a control node re-architecture was realized along with many useful features, and the development environment was updated. An initial 28% precision improvement was achieved also providing a foundation for additional gain via a created smaller and more heavily windowed vacuum cavity and picomotor controls.
Classical Simulations of the Drift of Magnetobound States of Positronium
The production and control of antihydrogen at very low temperatures provided a key tool to test the validity for the antimaterial of the fundamental principles of the interactions of nature such as the weak principle of equivalence (WEP), and CPT symmetry (Charge, Parity, and Time reversal). The work presented in this dissertation studies the collisions of electrons and positrons in strong magnetic fields that generate magnetobound positronium (positron-electron system temporarily bound due to the presence of a magnetic field) and its possible role in the generation of antihydrogen.
The Electrochemical Etching Process of a Tungsten Wire
This study produced and analyzed shaped tungsten wire tips formed through electrochemical etching. Specifically, the cone length and the radius of curvature of the tip were analyzed. Having the tips move dynamically through an electrolytic solution, such as potassium hydroxide, and tuning the initial starting depth of the tungsten wire along with the dynamic speed of the tungsten wire as it passed throughout the solution allowed various types of tip profiles to be produced. The tip's radius of curvature was able to be reproduced with an accuracy between 88 - 92 %. The method provided would be applicable for the production of various styles of liquid-metal ion source (LMIS) probes and scanning probe microscope (SPM) tips.
Low-Energy Electron Irradiation of 2D Graphene and Stability Investigations of 2D MoS2
In this work, we demonstrate the mechanism for etching exfoliated graphene on SiO2 and other technological important substrates (Si, SiC and ITO), using low-energy electron sources. Our mechanism is based on helium ion sputtering and vacancy formation. Helium ions instead of incident electrons cause the defects that oxygen reacts with and etches graphene. We found that etching does not occur on low-resistivity Si and ITO. Etching occurs on higher resistivity Si and SiC, although much less than on SiO2. In addition, we studied the degradation mechanism of MoS2 under ambient conditions using as-grown and preheated mono- and thicker-layered MoS2 films. Thicker-layered MoS2 do not exhibit the growth of dendrites that is characteristic of monolayer degradation. Dendrites are observed to stop at the monolayer-bilayer boundary. Raman and photoluminescence spectra of the aged bilayer and thicker-layered films are comparable to those of as-grown films. We found that greater stability of bilayers and thicker layers supports a previously reported mechanism for monolayer degradation involving Förster resonance energy transfer. As a result, straightforward and scalable 2D materials integration, or air stable heterostructure device fabrication may be easily achieved. Our proposed mechanisms for etching graphene and ambient degradation of MoS2 could catalyze research on realizing new devices that are more efficient, stable, and reliable for practical applications.
A Study of Anomalous Conduction in n-Type Amorphous Silicon and Correlations in Conductivity and Noise in Gold Nanoparticle-Ligand Arrays
This work explores two very different structural systems: n-type hydrogenated amorphous silicon (a-Si:H) and gold nanoparticles (AuNPs) suspended in a matrix of organic ligands. For a-Si:H, examination of the gas-phase concentration of dopant (1-6% PH3/SiH4) and argon diluent effects includes the temperature dependent conductivity, low-frequency electronic noise, and Raman spectroscopy to examine structure. It is found that a-Si:H samples grown with high dopant concentration or with argon dilution exhibit an anomalous hopping conduction mechanism with an exponent of p=0.75. An experimental approach is used to determine correlations between conduction parameters, such as the pre-exponential factor and the characteristic temperature, rather than an analysis of existing models to explain the anomalous conduction. From these results, the anomalous conduction is a result of a change in the shape of the density of states and not a shift of the Fermi level with dopant. Additionally, it is found that argon dilution increases the carrier mobility, reduces the doping efficiency, and causes a degradation of the short-range order. With AuNPs, a comparison of temperature dependent conductivity and low-frequency noise shows that the temperature coefficient of resistance (TCR) is independent of the length of interparticle distance while the noise magnitude decreases.
Deep Minima and Vortices for Positronium Formation in Positron-Hydrogen and Positron-Helium Collisions
This dissertation work is a study of positronium formation for positron-hydrogen and positron-helium collisions in the Ore gap (the energy region between the threshold for ground-state positronium formation and the first excitation level of the target atom) using variational K-matrices. We have fitted the K-matrices using multichannel effective range theories and using polynomials. Using the variational K-matrices and their fits, we have located zeros in the positronium-formation scattering amplitude and corresponding deep minima in the positronium-formation differential cross section. The zeros are related to the vortices in the extended velocity field associated with the positronium-formation scattering amplitude. For positron-hydrogen collisions, we have found two zeros in the positronium-formation scattering amplitude, and corresponding deep minima in the positronium-formation differential cross section, while we have obtained a zero in the positronium-formation scattering amplitude for positron-helium collisions. We have connected the zeros in the positronium-formation scattering amplitude to vortices in the extended velocity fields. Our work shows that vortices can occur for charge exchange in atomic collisions.
Investigation of Room Temperature Soft Ferromagnetism in Indium Phosphide Substrate Synthesized via Low Energy Nickel Ion Implantation
In this work, we have utilized an ion beam process known as gettering to migrate implanted Ni ions much deeper into the bulk substrate than their initial projected end of the range. The projected mean depth is known as Rp. The gettering effect is the most crucial part of the fabrication and we have found that for an H fluence of 3x 1016 cm-2 there is a threshold fluence of approximately 7.5 x 1015 cm-2 that cannot be surpassed if the gettering process is to be completed along with the substrate recovered to the high crystalline quality. This hard threshold is due to the gettering process relaxation induced mechanism that is responsible for migrating the Ni to the Rp/2 location while the H is vacating during the thermal annealing process. If the total number of vacancies produced by the H dissociation is not substantially larger than the total number of implanted Ni atoms the Ni will migrate to the Rp location of the Ni implantation at the amorphous and crystalline interface and toward the surface. When the gettering condition is not met the resulting magnetic responses vary from an exceptionally weak ferromagnetic response to not exhibiting a magnetic response. Additionally, conducting the ion implantation at an elevated substrate temperature does not increase the threshold Ni fluence above our established limit. During the elevated substrate temperature implantation, the hydrogen ions diffuse out to the surface resulting in less migration of the Ni to the initial Rp location within the Ni implantation region. The elevated temperature implantation condition appears to not create a sharp amorphous crystalline interface at the end of the range for the Ni implantation.
Modeling, Characterization, and Magnetic Behavior of Transition Metal Nanosystems Synthesized in Silicon Using Low Energy Ion Implantation
Magnetic nano-clusters in silicon involving iron and cobalt were synthesized using low energy (50 keV) ion implantation technique and post-implantation thermal annealing. Before the irradiation, multiple ion-solid interaction simulations were carried out to estimate optimal ion energy and fluence for each experiment. For high-fluence low-energy irradiation of heavy ions in a relatively lighter substrate, modeling the ion irradiation process using dynamic code SDTrimSP showed better agreement with the experimental results compared to the widely used static simulation code TRIM. A saturation in concentration (~ 48%) profile of the 50 keV Fe or Co implants in Si was seen at a fluence of ~ 2 × 1017 ions/cm2. Further study showed that for structures with a curved surface, particularly for nanowires, better simulation results could be extracted using a code "Iradina" as the curve geometry of the target surface can be directly defined in the input file. The compositional, structural, and magnetic properties were studied using Rutherford backscattering spectrometry, X-ray photoelectron spectroscopy, X-ray diffraction, atom probe tomography, and vibrating sample magnetometry. Irradiation of high-current (~ 2 μA/cm2) 50 keV Fe ions into Si at a fluence of 2 × 1017 ions/cm2 showed the formation of Fe5Si3 nano structures in the near-surface region of the substrate. Post-implantation thermal annealing in vacuum at 500 οC for one hour showed a significant enhancement in structural and magnetic properties. Similar high-current irradiation of 50 keV Co with a fluence of 3.2 × 1016 ions/cm2 into Si substrate showed the formation of superparamagnetic structure even at room temperature in the as-implanted samples. The simulation results for irradiation of Co and Fe on the curved surface were validated by ion irradiation on pre-fabricated Si nano tip followed by atom probe tomography analysis.
Synthesis, Modification, and Analysis of Silicate Cosmic Dust Analogues Using Ion-Beam Techniques
Silicates analogous to cosmic dust were synthesized, modified, and analyzed utilizing ion-beam techniques with Rutherford backscattering spectrometry (RBS) and x-ray diffraction (XRD). Silicate dust is a common constituent in interstellar space, with an estimated 50% of dust produced in the stellar winds of M class Asymptotic Giant Branch (AGB) stars. Silicate dust acts as a surface upon which other chemicals may form (water ice for example), increasing significance in the cosmochemistry field, as well as laboratory astrophysics. Silicate formation in the stellar winds of AGB stars was simulated in the laboratory environment. Three sequential ion implantations of Fe-, MgH2-, and O- with thermal annealing were used to synthesize a mixture appropriate to silicate dust in the surface layers of a p-type Si substrate. Post implantation He+ irradiation was shown to preferentially induce crystalline formation in the analogue prior to thermal annealing. This effect is believed to originate in the ion-electron interaction in the Si substrate. The effects of ionization and ion energy loss due to electronic stopping forces is believed to precipitate nucleation in the amorphous media. For annealing temperatures of 1273 K, predominant quartz formation was found in the substrate, whereas lower annealing temperatures of 1000 K formed enstatite without post-implantation He+ irradiation, and olivine with He+ irradiation. Post annealed crystalline phase modification was investigated via x-ray diffraction and elemental compositions were investigated utilizing RBS. Finally, the interdiffusion of Fe and Mg at temperatures of 900-1100 K was investigated with RBS, and activation energies for interdiffusion were extracted for the transition from amorphous to crystalline phase in the silicate analogues. Fe had an interdiffusion energy of 1.8 eV and Mg 1.5eV. The produced analogues have similar properties to those inferred from infrared spectroscopy of the stellar winds of M-class AGB stars with an oxygen-rich outflow. This work established a …
Fabrication of Nano-Channel Templates and a Study of the Electrical and Magnetic Properties of Nanowires Grown in Template Pores
This thesis is a study of the structural, electrical and magnetic properties of indium antimonide (InSb) nanowires (NWs), that were synthesized by a template-assisted ordered growth technique via electrochemical deposition. InSb was chosen for this study because of its intrinsic properties that make it a material of choice for applications in high channel mobility, infrared (IR) sensing, thermoelectrics, and magnetoresistive sensing martials. This work has four main components: (i) Growth in commercially available anodic aluminum oxide (AAO) template, where hole-dominated conduction was observed, following NW growth in a low pH electrolyte. The challenge in using these AAO templates was in covering the back surface of the pores with a metal film. Uncovered pores resulted in electrolyte leakage and non-reproducible results. (ii) Growth in flexible polycarbonate membranes, where the flexibility of the membranes resulted in polycrystalline or high defect density NW growth. (iii) Fabrication of an AAO template, where the barrier layer thinning technique was found to be efficient in removal of the think aluminum oxide barrier that exists at the interface between the template and the aluminum metal. This allows for direct growth of NWs into the template pores without the need for metal evaporation. (iv) Fabrication of a heterostructure comprising of an InSb layer sandwiched between two ferromagnetic contacts. Preliminary results show evidence of inverse spin-valve effect at the low temperature of 4K.
Investigation of Specialized Laser and Optical Techniques to Improve Precision Atomic Spectroscopy of Helium
The aim of this thesis is to develop both Yb and Tm fiber laser sources with all fiber cavities. Both wavelength ranges provide useful laser sources for optical pumping of helium. The goal is to develop Tm laser sources operating at 2058 nm to optically quench 3He (2058.63 nm) and 4He (2058.69 nm) singlets (21S0). We also have developed Yb laser sources at 1083 nm to optical pump the triplet states of helium and laser cool an atomic beam of helium.
Optical Property Study of 2D Graded Photonic Super-Crystals for Photon Management
In this dissertation, we study the optical property of 2D graded photonic super-crystals (GPSCs) for photon management. We focused primarily on manipulation and control of light by using the newly discovered GPSCs which present great opportunity for electromagnetic wave control in photonic devices. The GPSC has been used to explore the superior capability of improving the light extraction efficiency of OLEDs. The enhancement of extraction efficiency has been explained in term of destructive interference of surface plasmon resonance and out-coupling of surface plasmon through phase matching provided by GPSC and verified by e-field intensity distributions. A large light extraction efficiency up to 75% into glass substrate has been predicted through simulation. We also study the light trapping enhancement in GPSCs. Broadband, wide incident angle, and polarization independent light trapping enhancement is achieved in silicon solar cells patterned with the GPSCs. In addition, novel 2D GPSCs were fabricated using holographic lithography through the interference lithography by two sets of multiple beams arranged in a cone geometry using a spatial light modulator (SLM). Finally, we also report a fabrication of GPSCs with a super-cell size of 12a×12a by using e-beam lithography. Diffraction pattern from GPSCs reveals unique diffraction properties. In an application aspect, light emitting diode arrays can be replaced by a single light emitting diode shinning onto the diffraction pattern for a uniform fluorescence.
Manipulation of Light-Matter Interactions in Molybdenum Disulfide (MoS2) Monolayer through Dressed Phonons (DP) and Plasmons
The performance of electrical and optical devices based on two-dimensional semiconductors (2D) such as molybdenum disulfide is critically influenced due to very poor light absorption in the atomically thin layers. In this study, the phonon mediated optical absorption and emission properties in single atomic layers of MoS2 have been investigated. The electronic transitions in MoS2 due to near-field optical interaction and the influence of interface phonons due to the dielectric substrate GaN on the relaxation of optically generated carriers will be described. The near-field interaction can be induced in the presence of metal plasmons deposited on the surface of MoS2 monolayers. A hybrid metal-semiconductor system was realized by the deposition of silver (Ag) NPs on MoS2 layer and the localized plasmon modes were selectively chosen to interact with quasiparticles such as excitons and phonons. These quasiparticles are confined within the single atomic layer of MoS2 and are stable at room temperatures due to high binding energy. The lattice vibrational modes in MoS2 can be optically excited with the pulses from a femtosecond laser. These phonon modes can be optically dressed due to near-field interaction in the hybrid Ag-MoS2 system under an optical excitation resonant to localized plasmon modes. The coherent dynamics of the carriers in MoS2 were manipulated by the generation of dressed phonons. The driving field creates a coherence between the ground levels in the presence of optical near-field. A strong coupling between the exciton and plasmon modes forming a plexciton band is observed at room temperature within the coherence lifetime of the system. A significant enhancement of photoluminescent (PL) emission from MoS2 monolayer occurs due to carrier density modulation in the presence near-field interactions. The absorption and emission properties of MoS2 are influenced due to the interactions with the semiconducting substrate. The coupling of carriers in MoS2 with …
PAOFLOW-Aided Computational Materials Design
Functional materials are essential to human welfare and to provide foundations for emerging industries. As an alternative route to experimental materials discovery, computational materials designs are playing an increasingly significant role in the whole discovery process. In this work, we use an in-house developed python utility: PAOFLOW, which generates finite basis Hamiltonians from the projection of first principles plane-wave pseudopotential wavefunctions on pseudo atomic orbitals(PAO) for post-process calculation on various properties such as the band structures, density of states, complex dielectric constants, diffusive and anomalous spin and charge transport coefficients. In particular, we calculated the dielectric function of Sr-, Pb-, and Bi-substituted BaSnO3 over wide concentration ranges. Together with some high-throughput experimental study, our result indicates the importance of considering the mixed-valence nature and clustering effects upon substitution of BaSnO3 with Pb and Bi. We also studied two prototype ferroelectric rashba semiconductors, GeTe and SnTe, and found the spin Hall conductivity(SHC) can be large either in ferroelectric or paraelectric structure phase. Upon doping, the polar displacements in GeTe can be sustained up to a critical hole concentration while the tiny distortions in SnTe vanish at a minimal level of doping. Moreover, we investigated the sensitivity of two dimensional group-IV monochalcogenides to external strain and doping, which reveal for the first time giant intrinsic SHC in these materials, providing a new route for the design of highly tunable spintronics devices based on two-dimensional materials.
Renewal and Memory Approaches to Study Biological and Physiological Processes
In nature we find many instances of complex behavior for example the dynamics of stock markets, power grids, internet networks, highway traffic, social networks, heartbeat dynamics, neural dynamics, dynamics of living organisms, etc. The study of these complex systems involves the use of tools of non-linear dynamics and non-equilibrium statistical physics. This dissertation is devoted to understanding two different sources of complex behavior – non-poissonian renewal events also called crucial events and infinite memory of fractional Brownian motion. They both generate 1/f noise frequency spectrum. Thus, we studied examples of both processes and also their joint action. We also tried to establish the role of crucial events in biological and physiological processes like biophoton emission during the germination of seeds, the dynamics of heartbeat and neural dynamics. Using a statistical method of analyzing the time series of bio signals we were able to quantify the complexity associated with the underlying dynamics of these processes. Finally, we adopted a model that unifies both crucial events and memory fluctuations to study the rhythmic behavior observed in heart rate variability of people during meditation. We were able to also quantify the level of stress reduction during meditation. The work presented in this dissertation may help us understand the communication and transfer of information in complex systems.
UV Magnetic Plasmons in Cobalt Nanoparticles
The main goals of this research were to fabricate magnetic cobalt nanoparticles and study their structural, crystal structure, optical, and magnetic properties. Cobalt nanoparticles with average particle size 8.7 nm were fabricated by the method of high temperature reduction of cobalt salt utilizing trioctylphosphine as a surfactant, oleic acid as a stabilizer, and lithium triethylborohydride as a reducing reagent. Energy-dispersive X-ray spectroscopy (EDX) analysis confirmed the formation of cobalt nanoparticles. High resolution transmission electron microscopy images show that Co NPs form both HCP and FCC crystal structure. The blocking temperature of 7.6 nm Co NPs is 189 K. Above the blocking temperature, Co NPs are single domain and hence showed superparamagnetic behavior. Below the blocking temperature, Co NPs are ferromagnetic. Cobalt nanoparticles with a single-domain crystal structure support a sharp plasmon resonance at 280 nm. Iron nanoparticles with average particle size 4.8 nm were fabricated using chemical reduction method show plasmon resonance at 266 nm. Iron nanoparticles are ferromagnetic at 6 K and superparamagnetic at 300 K.
Electrically Tunable Absorption and Perfect Absorption Using Aluminum-Doped Zinc Oxide and Graphene Sandwiched in Oxides
Understanding the fundamental physics in light absorption and perfect light absorption is vital for device applications in detector, sensor, solar energy harvesting and imaging. In this research study, a large area fabrication of Al-doped ZnO/Al2O3/graphene/Al2O3/gold/silicon device was enabled by a spin-processable hydrophilic mono-layer graphene oxide. In contrast to the optical properties of noble metals, which cannot be tuned or changed, the permittivity of transparent metal oxides, such as Al-doped ZnO and indium tin oxide, are tunable. Their optical properties can be adjusted via doping or tuned electrically through carrier accumulation and depletion, providing great advantages for designing tunable photonic devices or realizing perfect absorption. A significant shift of Raman frequency up to 360 cm-1 was observed from graphene in the fabricated device reported in this work. The absorption from the device was tunable with a negative voltage applied on the Al-doped ZnO side. The generated absorption change was sustainable when the voltage was off and erasable when a positive voltage was applied. The reflection change was explained by the Fermi level change in graphene. The sustainability of tuned optical property in graphene can lead to a design of device with less power consumption.
Exploring Growth Kinematics and Tuning Optical and Electronic Properties of Indium Antimonide Nanowires
This dissertation work is a study of the growth kinematics, synthesis strategies and intrinsic properties of InSb nanowires (NWs). The highlights of this work include a study of the effect of the growth parameters on the composition and crystallinity of NWs. A change in the temperature ramp-up rate as the substrate was heated to reach the NW growth temperature resulted in NWs that were either crystalline or amorphous. The as-grown NWs were found to have very different optical and electrical properties. The growth mechanism for crystalline NWs is the standard vapor-liquid-solid growth mechanism. This work proposes two possible growth mechanisms for amorphous NWs. The amorphous InSb NWs were found to be very sensitive to laser radiation and to heat treatment. Raman spectroscopy measurements on these NWs showed that intense laser light induced localized crystallization, most likely due to radiation induced annealing of defects in the region hit by the laser beam. Electron transport measurements revealed non-linear current-voltage characteristics that could not be explained by a Schottky diode behavior. Analysis of the experimental data showed that electrical conduction in this material is governed by space charge limited current (SCLC) in the high bias-field region and by Ohm's law in the low bias region. Temperature dependent conductivity measurements on these NWs revealed that conduction follows Mott variable range hopping mechanism at low temperatures and near neighbor hopping mechanism at high temperature. Low-temperature annealing of the amorphous NWs in an inert environment was found to induce a phase transformation of the NWs, causing their crystallinity to be enhanced. This thesis also proposes a new and low-cost strategy to grow p-type InSb NWs on InSb films grown on glass substrate. The high quality polycrystalline InSb film was used as the host on which the NWs were grown. The NWs with an average diameter of …
Fabrication and Study of the Optical Properties of 3D Photonic Crystals and 2D Graded Photonic Super-Crystals
In this dissertation, I am presenting my research on the fabrication and simulation of the optical properties of 3D photonic crystals and 2D graded photonic super-crystals. The 3D photonic crystals were fabricated using holographic lithography with a single, custom-built reflective optical element (ROE) and single exposure from a visible light laser. Fully 3D photonic crystals with 4-fold, 5- fold, and 6-fold symmetries were fabricated using the flexible, 3D printed ROE. In addition, novel 2D graded photonic super-crystals were fabricated using a spatial light modulator (SLM) in a 4f setup for pixel-by-pixel phase engineering. The SLM was used to control the phase and intensity of sets of beams to fabricate the 2D photonic crystals in a single exposure. The 2D photonic crystals integrate super-cell periodicities with 4-fold, 5-fold, and 6-fold symmetries and a graded fill fraction. The simulations of the 2D graded photonic super-crystals show extraordinary properties such as full photonic band gaps and cavity modes with Q-factors of ~106. This research could help in the development of organic light emitting diodes, high-efficiency solar cells, and other devices.
Physical Boundary as a Source of Anomalies in Transport Processes in Acoustics and Electrodynamics
Various anomalous effects that emerge when the interfaces between media are involved in sound-matter or light-matter interactions are studied. The three specific systems examined are a fluid channel between elastic metal plates, a linear chain of metallic perforated cylindrical shells in air, and a metal-dielectric slab with the interfaces treated as finite regions of smoothly changing material properties. The scattering of acoustic signals on the first two is predicted to be accompanied by the effects of redirection and splitting of sound. In the third system, which supports the propagation of surface plasmons, it is discovered that the transition region introduces a nonradiative decay mechanism which adds to the plasmon dissipation. The analytical results are supported with numerical simulations. The outlined phenomena provide the ideas and implications for applications involving manipulation of sound or excitation of surface plasmons.
Quantum Coherence Effects Coupled via Plasmons
This thesis is an attempt at studying quantum coherence effects coupled via plasmons. After introducing the quantum coherence in atomic systems in Chapter 1, we utilize it in Chapter 2 to demonstrate a new technique of detection of motion of single atoms or irons inside an optical cavity. By taking into account the interaction of coherences with surface plasmonic waves excited in metal nanoparticles, we provide a theoretical model along with experimental data in Chapter 3 to describe the modification of Raman spectra near metal nanoparticles. We show in chapter 4 that starting from two emitters, coupled via a plasmonic field, the symmetry breaking occurs, making detectable the simultaneous existence of the fast super-radiance and the slow sub-radiance emission of dye fluorescence near a plasmonic surface. In Chapter 5, we study the photon statistics of a group of emitters coupled via plasmons and by the use of quantum regression theorem, we provide a theoretical model to fully investigate the dependence of photon bunching and anti-bunching effects to the interaction between atoms, fields and surrounding mediums.
Application of Statistical Physics in Human Physiology: Heart-Brain Dynamics
This dissertation is devoted to study of complex systems in human physiology particularly heartbeats and brain dynamics. We have studied the dynamics of heartbeats that has been a subject of investigation of two independent groups. The first group emphasized the multifractal nature of the heartbeat dynamics of healthy subjects, whereas the second group had established a close connection between healthy subjects and the occurrence of crucial events. We have analyzed the same set of data and established that in fact the heartbeats are characterized by the occurrence of crucial and Poisson events. An increase in the percentage of crucial events makes the multifractal spectrum broader, thereby bridging the results of the former group with the results of the latter group. The crucial events are characterized by a power index that signals the occurrence of 1/f noise for complex systems in the best physiological condition. These results led us to focus our analysis on the statistical properties of crucial events. We have adopted the same statistical analysis to study the statistical properties of the heartbeat dynamics of subjects practicing meditation. The heartbeats of people doing meditation are known to produce coherent fluctuations. In addition to this effect, we made the surprising discovery that meditation makes the heartbeat depart from the ideal condition of 1/f noise. We also discussed how to combine the wave-like nature of the dynamics of the brain with the existence of crucial events that are responsible for the 1/f noise. We showed that the anomalous scaling generated by the crucial events could be established by means of a direct analysis of raw data. The efficiency of the direct analysis procedure is made possible by the fact that periodicity and crucial events is the product of a spontaneous process of self-organization. We argue that the results of this study …
Emergence of Cooperation and Homeodynamics as a Result of Self Organized Temporal Criticality: From Biology to Physics
This dissertation is an attempt at establishing a bridge between biology and physics leading naturally from the field of phase transitions in physics to the cooperative nature of living systems. We show that this aim can be realized by supplementing the current field of evolutionary game theory with a new form of self-organized temporal criticality. In the case of ordinary criticality, the units of a system choosing either cooperation or defection under the influence of the choices done by their nearest neighbors, undergo a significant change of behavior when the intensity of social influence has a critical value. At criticality, the behavior of the individual units is correlated with that of all other units, in addition to the behavior of the nearest neighbors. The spontaneous transition to criticality of this work is realized as follows: the units change their behavior (defection or cooperation) under the social influence of their nearest neighbors and update the intensity of their social influence spontaneously by the feedback they get from the payoffs of the game (environment). If units, which are selfish, get higher benefit with respect to their previous play, they increase their interest to interact with other units and vice versa. Doing this, the behavior of single units and the whole system spontaneously evolve towards criticality, thereby realizing a global behavior favoring cooperation. In the case when the interacting units are oscillators with their own periodicity, homeodynamics concerns, the individual payoff is the synchronization with the nearest neighbors (i.e., lowering the energy of the system), the spontaneous transition to criticality generates fluctuations characterized by the joint action of periodicity and crucial events of the same kind as those revealed by the current analysis of the dynamics of the brain. This result is expected to explain the efficiency of enzyme catalyzers, on the basis …
Nanophotonics of Plasmonic and Two-Dimensional Metamaterials
Various nanostructured materials display unique and interesting optical properties. Specific nanoscale objects discussed in an experimental perspective in this dissertation include optical metamaterials, surface plasmon sensors, and two-dimensional materials. These nanoscale objects were fabricated, investigated optically, and their applications are assessed. First, one-dimensional magnetic gratings were studied, followed by their two-dimensional analog, the so-called "fishnet." Both were fabricated, characterized, and their properties, such as waveguiding modes, are examined. Interestingly, these devices can exhibit optical magnetism and even negative refraction; however, their general characterization at oblique incidence is challenging due to diffraction. Here, a new method of optical characterization of metamaterials which takes into account diffraction is presented. Next, surface plasmon resonance (SPR) was experimentally used in two schemes, for the first time, to determine the transition layer characteristics between a metal and dielectric. The physics of interfaces, namely the singularity of electric permittivity and how it can be electrically shifted, becomes clearer owing to the extreme sensitivity of SPR detection mechanisms. Finally, ultra-thin two-dimensional semiconducting materials had their radiative lifetime analyzed. Their lifetimes are tuned both by number of atomic layers and applied voltage biasing across the surface, and the changes in lifetime are suspected to be due to quenching or enhancement of non-radiative process rates.
Artificially Structured Boundary for Control and Confinement of Beams and Plasmas
An artificially structured boundary (ASB) produces a short-range, static electromagnetic field that can reflect charged particles. In the work presented, an ASB is considered to consist of a spatially periodic arrangement of electrostatically plugged magnetic cusps. When used to create an enclosed volume, an ASB may confine a non-neutral plasma that is effectively free of applied electromagnetic fields, provided the spatial period of the ASB-applied field is much smaller than any one dimension of the confinement volume. As envisioned, a non-neutral positron plasma could be confined by an ASB along its edge, and the space-charge of the positron plasma would serve to confine an antiproton plasma. If the conditions of the two-species plasma are suitable, production of antihydrogen via three-body recombination for antimatter gravity studies may be possible. A classical trajectory Monte Carlo (CTMC) simulation suite has been developed in C++ to efficiently simulate charged particle interactions with user defined electromagnetic fields. The code has been used to explore several ASB configurations, and a concept for a cylindrically symmetric ASB trap that employs a picket-fence magnetic field has been developed. Particle-in-cell (PIC) modeling has been utilized to investigate the confinement of non-neutral and partially neutralized positron plasmas in the trap.
Examination of Magnetic Plasma Expulsion
Magnetic plasma expulsion uses a magnetic field distortion to redirect incident charged particles around a certain area for the purposes of shielding. Computational studies are carried out and for certain values of magnetic field, magnetic plasma expulsion is found to effectively shield a sizable area. There are however many plasma behaviors and interactions that must be considered. Applications to a new cryogenic antimatter trap design are discussed.
Core-Shell Based Metamaterials: Fabrication Protocol and Optical Properties
The objective of this study is to examine core-shell type plasmonic metamaterials aimed at the development of materials with unique electromagnetic properties. The building blocks of metamaterials under study consist of gold as a metal component, and silica and precipitated calcium carbonate (PCC) as the dielectric media. The results of this study demonstrate important applications of the core-shells including scattering suppression, airborne obscurants made of fractal gold shells, photomodification of the fractal structure providing windows of transparency, and plasmonics core-shell with a gain shell as an active device. Plasmonic resonances of the metallic shells depend on their nanostructure and geometry of the core, which can be optimized for the broadband extinction. Significant extinction from the visible to mid-infrared makes fractal shells very attractive as bandpass filters and aerosolized obscurants. In contrast to the planar fractal films, where the absorption and reflection equally contribute to the extinction, the shells' extinction is caused mainly by the absorption. This work shows that the Mie scattering resonance of a silica core with 780 nm diameter at 560 nm is suppressed by 75% and only partially substituted by the absorption in the shell so that the total transmission is noticeably increased. Effective medium theory supports our experiments and indicates that light goes mostly through the epsilon-near-zero shell with approximately wavelength independent absorption rate. Broadband extinction in fractal shells allows as well for a laser photoburning of holes in the extinction spectra and consequently windows of transparency in a controlled manner. Au fractal nanostructures grown on PCC flakes provide the highest mass normalized extinction, up to 3 m^2/g, which has been demonstrated in the broad spectral range. In the nanoplasmonic field active devices consist of a Au nanoparticle that acts as a cavity and the dye molecules attached to it via thin silica shell as the …
Design, Construction, and Application of an Electrostatic Quadrupole Doublet for Heavy Ion Nuclear Microprobe Research
A nuclear microprobe, typically consisting of 2 - 4 quadrupole magnetic lenses and apertures serving as objective and a collimating divergence slits, focuses MeV ions to approximately 1 x 1 μm for modification and analysis of materials. Although far less utilized, electrostatic quadrupole fields similarly afford strong focusing of ions and have the added benefit of doing so independent of ion mass. Instead, electrostatic quadrupole focusing exhibits energy dependence on focusing ions. A heavy ion microprobe could extend the spatial resolution of conventional microprobe techniques to masses untenable by quadrupole magnetic fields. An electrostatic quadrupole doublet focusing system has been designed and constructed using several non-conventional methods and materials for a wide range of microprobe applications. The system was modeled using the software package "Propagate Rays and Aberrations by Matrices" which quantifies system specific parameters such as demagnification and intrinsic aberrations. Direct experimental verification was obtained for several of the parameters associated with the system. Details of the project and with specific applications of the system are presented.
Dynamic Screening via Intense Laser Radiation and Its Effects on Bulk and Surface Plasma Dispersion Relations
Recent experimentation with excitation of surface plasmons on a gold film in the Kretschmann configuration have shown what appears to be a superconductive effect. Researchers claimed to see the existence of electron pairing during scattering as well as magnetic field repulsion while twisting the polarization of the laser. In an attempt to explain this, they pointed to a combination of electron-electron scattering in external fields as well as dynamic screening via intense laser radiation. This paper expands upon the latter, taking a look at the properties of a dynamic polarization function, its effects on bulk and surface plasmon dispersion relations, and its various consequences.
Fabrication of Photonic Crystal Templates through Holographic Lithography and Study of their Optical and Plasmonic Properties in Aluminium Doped Zinc Oxide
This dissertation focuses on two aspects of integrating near-infrared plasmonics with electronics with the intent of developing the platform for future photonics. The first aspect focuses on fabrication by introducing and developing a simple, single reflective optical element capable of high–throughput, large scale fabrication of micro- and nano-sized structure templates using holographic lithography. This reflective optical element is then utilized to show proof of concept in fabricating three dimensional structures in negative photoresists as well as tuning subwavelength features in two dimensional compound lattices for the fabrication of dimer and trimer antenna templates. The second aspect focuses on the study of aluminum zinc oxide (AZO), which belongs to recently popularized material class of transparent conducting oxides, capable of tunable plasmonic capabilities in the near-IR regime. Holographic lithography is used to pattern an AZO film with a square lattice array that are shown to form standing wave resonances at the interface of the AZO and the substrate. To demonstrate device level integration the final experiment utilizes AZO patterned gratings and measures the variation of diffraction efficiency as a negative bias is applied to change the AZO optical properties. Additionally efforts to understand the behavior of these structures through optical measurements is complemented with finite difference time domain simulations.
Interacting complex systems: theory and application to real-world situations
The interest in complex systems has increased exponentially during the past years because it was found helpful in addressing many of today's challenges. The study of the brain, biology, earthquakes, markets and social sciences are only a few examples of the fields that have benefited from the investigation of complex systems. Internet, the increased mobility of people and the raising energy demand are among the factors that brought in contact complex systems that were isolated till a few years ago. A theory for the interaction between complex systems is becoming more and more urgent to help mankind in this transition. The present work builds upon the most recent results in this field by solving a theoretical problem that prevented previous work to be applied to important complex systems, like the brain. It also shows preliminary laboratory results of perturbation of in vitro neural networks that were done to test the theory. Finally, it gives a preview of the studies that are being done to create a theory that is even closer to the interaction between real complex systems.
Back to Top of Screen