You limited your search to:

  Partner: UNT Libraries
 Degree Discipline: Physics
 Collection: UNT Theses and Dissertations
The Effect of Average Grain Size on Polycrystalline Diamond Films

The Effect of Average Grain Size on Polycrystalline Diamond Films

Date: May 2002
Creator: Abbott, Patrick Roland
Description: The work function of hydrogen-terminated, polycrystalline diamond was studied using ultraviolet photoelectron spectroscopy. Polycrystalline diamond films were deposited onto molybdenum substrates by electrophoresis for grain sizes ranging from 0.3 to 108 microns. The work function and electron affinity were measured using 21.2 eV photons from a helium plasma source. The films were characterized by x-ray photoelectron spectroscopy to determine elemental composition and the sp2/sp3 carbon fraction. The percentage of (111) diamond was determined by x-ray diffraction, and scanning electron microscopy was performed to determine average grain size. The measured work function has a maximum of 5.1 eV at 0.3 microns, and decreases to 3.2 eV at approximately 4 microns. Then the work function increases with increasing grain size to 4.0 eV at 15 microns and then asymptotically approaches the 4.8 eV work function of single crystal diamond at 108 microns. These results are consistent with a 3-component model in which the work function is controlled by single-crystal (111) diamond at larger grain sizes, graphitic carbon at smaller grain sizes, and by the electron affinity for the intervening grain sizes.
Contributing Partner: UNT Libraries
Solutions of the Equations of Radiative Transfer by an Invariant Imbedding Approach

Solutions of the Equations of Radiative Transfer by an Invariant Imbedding Approach

Date: January 1969
Creator: Adams, Charles N.
Description: This thesis is a study of the solutions of the equations of radiative transfer by an invariant imbedding approach.
Contributing Partner: UNT Libraries
Perturbation of renewal processes

Perturbation of renewal processes

Date: May 2008
Creator: Akin, Osman Caglar
Description: Renewal theory began development in the early 1940s, as the need for it in the industrial engineering sub-discipline operations research had risen. In time, the theory found applications in many stochastic processes. In this thesis I investigated the effect of seasonal effects on Poisson and non-Poisson renewal processes in the form of perturbations. It was determined that the statistical analysis methods developed at UNT Center for Nonlinear Science can be used to detect the effects of seasonality on the data obtained from Poisson/non-Poisson renewal systems. It is proved that a perturbed Poisson process can serve as a paradigmatic model for a case where seasonality is correlated to the noise and that diffusion entropy method can be utilized in revealing this relation. A renewal model making a connection with the stochastic resonance phenomena is used to analyze a previous neurological experiment, and it was shown that under the effect of a nonlinear perturbation, a non-Poisson system statistics may make a transition and end up in the of Poisson basin of statistics. I determine that nonlinear perturbation of the power index for a complex system will lead to a change in the complexity characteristics of the system, i.e., the system will reach ...
Contributing Partner: UNT Libraries
Structural and Photoelectron Emission Properties of Chemical Vapor Deposition Grown Diamond Films

Structural and Photoelectron Emission Properties of Chemical Vapor Deposition Grown Diamond Films

Date: August 1998
Creator: Akwani, Ikerionwu Asiegbu
Description: The effects of methane (CH4), diborone (B2H6) and nitrogen (N2) concentrations on the structure and photoelectron emission properties of chemical vapor deposition (CVD) polycrystalline diamond films were studied. The diamond films were grown on single-crystal Si substrates using the hot-tungsten filament CVD technique. Raman spectroscopy and x-ray photoelectron spectroscopy (XPS) were used to characterize the different forms of carbon in the films, and the fraction of sp3 carbon to sp3 plus sp2 carbon at the surface of the films, respectively. Scanning electron microscopy (SEM) was used to characterize the surface morphology of the films. The photoelectron emission properties were determined by measuring the energy distributions of photoemitted electrons using ultraviolet photoelectron spectroscopy (UPS), and by measuring the photoelectric current as a function of incident photon energy.
Contributing Partner: UNT Libraries
Synchronous Chaos, Chaotic Walks, and Characterization of Chaotic States by Lyapunov Spectra

Synchronous Chaos, Chaotic Walks, and Characterization of Chaotic States by Lyapunov Spectra

Date: August 1993
Creator: Albert, Gerald (Gerald Lachian)
Description: Four aspects of the dynamics of continuous-time dynamical systems are studied in this work. The relationship between the Lyapunov exponents of the original system and the Lyapunov exponents of induced Poincare maps is examined. The behavior of these Poincare maps as discriminators of chaos from noise is explored, and the possible Poissonian statistics generated at rarely visited surfaces are studied.
Contributing Partner: UNT Libraries
Model for Long-range Correlations in DNA Sequences

Model for Long-range Correlations in DNA Sequences

Date: December 1996
Creator: Allegrini, Paolo
Description: We address the problem of the DNA sequences developing a "dynamical" method based on the assumption that the statistical properties of DNA paths are determined by the joint action of two processes, one deterministic, with long-range correlations, and the other random and delta correlated. The generator of the deterministic evolution is a nonlinear map, belonging to a class of maps recently tailored to mimic the processes of weak chaos responsible for the birth of anomalous diffusion. It is assumed that the deterministic process corresponds to unknown biological rules which determine the DNA path, whereas the noise mimics the influence of an infinite-dimensional environment on the biological process under study. We prove that the resulting diffusion process, if the effect of the random process is neglected, is an a-stable Levy process with 1 < a < 2. We also show that, if the diffusion process is determined by the joint action of the deterministic and the random process, the correlation effects of the "deterministic dynamics" are cancelled on the short-range scale, but show up in the long-range one. We denote our prescription to generate statistical sequences as the Copying Mistake Map (CMM). We carry out our analysis of several DNA sequences, ...
Contributing Partner: UNT Libraries
Investigation of the Uniaxial Stress Dependence of the Effective Mass in N-Type InSb Using the Magnetophonon Effect

Investigation of the Uniaxial Stress Dependence of the Effective Mass in N-Type InSb Using the Magnetophonon Effect

Date: December 1971
Creator: Alsup, Dale Lynn
Description: The magnetophonon effect was used to investigate the uniaxial stress dependence of the effective mass in n-type InSb (indium antimonide).
Contributing Partner: UNT Libraries
Thermal Properties of a Single Crystal of Bismuth at Liquid-helium Temperatures

Thermal Properties of a Single Crystal of Bismuth at Liquid-helium Temperatures

Date: January 1964
Creator: Alsup, Dale Lynn
Description: The purpose of this investigation was the determination of the thermal conduction properties of a single crystal of bismuth at liquid-helium temperatures in magnetic fields up to eighteen kilogauss.
Contributing Partner: UNT Libraries
Studying Interactions of Gas Molecules with Nanomaterials Loaded in a Microwave Resonant Cavity

Studying Interactions of Gas Molecules with Nanomaterials Loaded in a Microwave Resonant Cavity

Date: August 2007
Creator: Anand, Aman
Description: A resonant cavity operating in TE011 mode was used to study the adsorption response of single walled carbon nanotubes (SWCNTs) and other nanomaterials for different types of gas molecules. The range of the frequency signal as a probe was chosen as geometry dependent range between 9.1 -9.8 GHz. A highly specific range can be studied for further experiments dependent on the type of molecule being investigated. It was found that for different pressures of gases and for different types of nanomaterials, there was a different response in the shifts of the probe signal for each cycle of gassing and degassing of the cavity. This dissertation suggests that microwave spectroscopy of a complex medium of gases and carbon nanotubes can be used as a highly sensitive technique to determine the complex dielectric response of different polar as well as non-polar gases when subjected to intense electromagnetic fields within the cavity. Also, as part of the experimental work, a range of other micro-porous materials was tested using the residual gas analysis (RGA) technique to determine their intrinsic absorption/adsorption characteristics when under an ultra-high vacuum environment. The scientific results obtained from this investigation, led to the development of a chemical biological sensor prototype. ...
Contributing Partner: UNT Libraries
Absolute Beta Counting Using Thick Sources

Absolute Beta Counting Using Thick Sources

Date: 1950
Creator: Anderson, Miles E., 1926-
Description: The problem with which we shall concern ourselves in this paper is the self-scattering and self-absorption of beta particles by the source.
Contributing Partner: UNT Libraries
FIRST PREV 1 2 3 4 5 NEXT LAST