You limited your search to:

  Partner: UNT Libraries
 Decade: 2010-2019
 Degree Discipline: Physics
 Collection: UNT Theses and Dissertations
EEG, Alpha Waves and Coherence

EEG, Alpha Waves and Coherence

Date: May 2010
Creator: Ascolani, Gianluca
Description: This thesis addresses some theoretical issues generated by the results of recent analysis of EEG time series proving the brain dynamics are driven by abrupt changes making them depart from the ordinary Poisson condition. These changes are renewal, unpredictable and non-ergodic. We refer to them as crucial events. How is it possible that this form of randomness be compatible with the generation of waves, for instance alpha waves, whose observation seems to suggest the opposite view the brain is characterized by surprisingly extended coherence? To shed light into this apparently irretrievable contradiction we propose a model based on a generalized form of Langevin equation under the influence of a periodic stimulus. We assume that there exist two different forms of time, a subjective form compatible with Poisson statistical physical and an objective form that is accessible to experimental observation. The transition from the former to the latter form is determined by the brain dynamics interpreted as emerging from the cooperative interaction among many units that, in the absence of cooperation would generate Poisson fluctuations. We call natural time the brain internal time and we make the assumption that in the natural time representation the time evolution of the EEG variable ...
Contributing Partner: UNT Libraries
A Determination of the Fine Structure Constant Using Precision Measurements of Helium Fine Structure

A Determination of the Fine Structure Constant Using Precision Measurements of Helium Fine Structure

Date: August 2010
Creator: Smiciklas, Marc
Description: Spectroscopic measurements of the helium atom are performed to high precision using an atomic beam apparatus and electro-optic laser techniques. These measurements, in addition to serving as a test of helium theory, also provide a new determination of the fine structure constant α. An apparatus was designed and built to overcome limitations encountered in a previous experiment. Not only did this allow an improved level of precision but also enabled new consistency checks, including an extremely useful measurement in 3He. I discuss the details of the experimental setup along with the major changes and improvements. A new value for the J = 0 to 2 fine structure interval in the 23P state of 4He is measured to be 31 908 131.25(30) kHz. The 300 Hz precision of this result represents an improvement over previous results by more than a factor of three. Combined with the latest theoretical calculations, this yields a new determination of α with better than 5 ppb uncertainty, α-1 = 137.035 999 55(64).
Contributing Partner: UNT Libraries
Ion Beam Synthesis of Carbon Assisted Nanosystems in Silicon Based Substrates

Ion Beam Synthesis of Carbon Assisted Nanosystems in Silicon Based Substrates

Date: May 2011
Creator: Poudel, Prakash Raj
Description: The systematic study of the formation of β-SiC formed by low energy carbon ion (C-)implantation into Si followed by high temperature annealing is presented. The research is performed to explore the optimal annealing conditions. The formation of crystalline β-SiC is clearly observed in the sample annealed at 1100 °C for a period of 1 hr. Quantitative analysis is performed in the formation of β-SiC by the process of implantation of different carbon ion fluences of 1×1017, 2×1017, 5×1017, and 8×1017 atoms /cm2 at an ion energy of 65 keV into Si. It is observed that the average size of β-SiC crystals decreased and the amount of β-SiC crystals increased with the increase in the implanted fluences when the samples were annealed at 1100°C for 1 hr. However, it is observed that the amount of β-SiC linearly increased with the implanted fluences up to 5×1017 atoms /cm2. Above this fluence the amount of β-SiC appears to saturate. The stability of graphitic C-C bonds at 1100°C limits the growth of SiC precipitates in the sample implanted at a fluence of 8×1017 atoms /cm2 which results in the saturation behavior of SiC formation in the present study. Secondly, the carbon cluster formation process ...
Contributing Partner: UNT Libraries
Thorium and Uranium M-shell X-ray Production Cross Sections for 0.4 – 4.0 MeV Protons, 0.4 - 6.0 MeV Helium Ions, 4.5 – 11.3 MeV Carbon Ions, and 4.5 – 13.5 MeV Oxygen Ions.

Thorium and Uranium M-shell X-ray Production Cross Sections for 0.4 – 4.0 MeV Protons, 0.4 - 6.0 MeV Helium Ions, 4.5 – 11.3 MeV Carbon Ions, and 4.5 – 13.5 MeV Oxygen Ions.

Date: May 2011
Creator: Phinney, Lucas C.
Description: The M-shell x-ray production cross section for thorium and uranium have been determined for protons of energy 0.4 - 4.0 MeV, helium ions of energy 0.4 - 6.0 MeV, carbon ions of energy 4.5 - 11.3 MeV and oxygen ions of energy 4.5 - 13.5 MeV. The total cross sections and the cross sections for individual x-ray peaks in the spectrum, consisting of the following transitions Mz (M4-N2, M5-N3, M4-N3), Ma (M5-N6,7), Mb (M4-N6, M5-O3, M4- O2), and Mg (M4-O3, M5-P3, M3-N4, M3-N5), were compared to the theoretical values determined from the PWBA + OBKN and ECUSAR. The theoretical values for the carbon and oxygen ions were also modified to take into account the effects of multiple ionizations of the target atom by the heavier ions. It is shown that the results of the ECUSAR theory tend to provide better agreement with the experimental data.
Contributing Partner: UNT Libraries
Nanoscale Materials Applications: Thermoelectrical, Biological, and Optical Applications with Nanomanipulation Technology

Nanoscale Materials Applications: Thermoelectrical, Biological, and Optical Applications with Nanomanipulation Technology

Date: August 2011
Creator: Lee, Kyung-Min
Description: In a sub-wavelength scale, even approaching to the atomic scale, nanoscale physics shows various novel phenomena. Since it has been named, nanoscience and nanotechnology has been employed to explore and exploit this small scale world. For example, with various functionalized features, nanowire (NW) has been making its leading position in the researches of physics, chemistry, biology, and engineering as a miniaturized building block. Its individual characteristic shows superior and unique features compared with its bulk counterpart. As one part of these research efforts and progresses, and with a part of the fulfillment of degree study, novel methodologies and device structures in nanoscale were devised and developed to show the abilities of high performing thermoelectrical, biological, and optical applications. A single β-SiC NW was characterized for its thermoelectric properties (thermal conductivity, Seebeck coefficient, and figure of merit) to compare with its bulk counterpart. The combined structure of Ag NW and ND was made to exhibit its ability of clear imaging of a fluorescent cell. And a plasmonic nanosture of silver (Ag) nanodot array and a β-SiC NW was fabricated to show a high efficient light harvesting device that allows us to make a better efficient solar cell. Novel nanomanipulation techniques were ...
Contributing Partner: UNT Libraries
The Interactions of Plasma with Low-k Dielectrics: Fundamental Damage and Protection Mechanisms

The Interactions of Plasma with Low-k Dielectrics: Fundamental Damage and Protection Mechanisms

Date: August 2011
Creator: Behera, Swayambhu Prasad
Description: Nanoporous low-k dielectrics are used for integrated circuit interconnects to reduce the propagation delays, and cross talk noise between metal wires as an alternative material for SiO2. These materials, typically organosilicate glass (OSG) films, are exposed to oxygen plasmas during photoresist stripping and related processes which substantially damage the film by abstracting carbon, incorporating O and OH, eventually leading to significantly increased k values. Systematic studies have been performed to understand the oxygen plasma-induced damage mechanisms on different low-k OSG films of various porosity and pore interconnectedness. Fourier transform infrared spectroscopy, x-ray photoelectron spectroscopy and atomic force microscopy are used to understand the damage kinetics of O radicals, ultraviolet photons and charged species, and possible ways to control the carbon loss from the film. FTIR results demonstrate that O radical present in the plasma is primarily responsible for carbon abstraction and this is governed by diffusion mechanism involving interconnected film nanopores. The loss of carbon from the film can be controlled by closing the pore interconnections, He plasma pretreatment is an effective way to control the damage at longer exposure by closing the connections between the pores.
Contributing Partner: UNT Libraries
Temporal Properties Of Dynamic Processes On Complex Networks

Temporal Properties Of Dynamic Processes On Complex Networks

Date: December 2011
Creator: Turalska, Malgorzata A.
Description: Many social, biological and technological systems can be viewed as complex networks with a large number of interacting components. However despite recent advancements in network theory, a satisfactory description of dynamic processes arising in such cooperative systems is a subject of ongoing research. In this dissertation the emergence of dynamical complexity in networks of interacting stochastic oscillators is investigated. In particular I demonstrate that networks of two and three state stochastic oscillators present a second-order phase transition with respect to the strength of coupling between individual units. I show that at the critical point fluctuations of the global order parameter are characterized by an inverse-power law distribution and I assess their renewal properties. Additionally, I study the effect that different types of perturbation have on dynamical properties of the model. I discuss the relevance of those observations for the transmission of information between complex systems.
Contributing Partner: UNT Libraries
High Efficiency High Power Blue Laser by Resonant Doubling in PPKTP

High Efficiency High Power Blue Laser by Resonant Doubling in PPKTP

Date: August 2011
Creator: Danekar, Koustubh
Description: I developed a high power blue laser for use in scientific and technical applications (eg. precision spectroscopy, semiconductor inspection, flow cytometry, etc). It is linearly polarized, single longitudinal and single transverse mode, and a convenient fiber coupled continuous wave (cw) laser source. My technique employs external cavity frequency doubling and provides better power and beam quality than commercially available blue diode lasers. I use a fiber Bragg grating (FBG) stabilized infrared (IR) semiconductor laser source with a polarization maintaining (PM) fiber coupled output. Using a custom made optical and mechanical design this output is coupled with a mode matching efficiency of 96% into the doubling cavity. With this carefully designed and optimized cavity, measurements were carried out at various fundamental input powers. A net efficie ncy of 81 % with an output power of 680 mW at 486 nm was obtained using 840 mW of IR input. Also I report an 87.5 % net efficiency in coupling of blue light from servo locked cavity into a single mode PM fiber. Thus I have demonstrated a total fiber to fiber efficiency of 71% can be achieved in our approach using periodically poled potassium titanyl phosphate (PPKTP). To obtain these results, all ...
Contributing Partner: UNT Libraries
Electrostatic Mechanism of Emission Enhancement in Hybrid Metal-semiconductor Light-emitting Heterostructures

Electrostatic Mechanism of Emission Enhancement in Hybrid Metal-semiconductor Light-emitting Heterostructures

Date: May 2012
Creator: Llopis, Antonio
Description: III-V nitrides have been put to use in a variety of applications including laser diodes for modern DVD devices and for solid-state white lighting. Plasmonics has come to the foreground over the past decade as a means for increasing the internal quantum efficiency (IQE) of devices through resonant interaction with surface plasmons which exist at metal/dielectric interfaces. Increases in emission intensity of an order of magnitude have been previously reported using silver thin-films on InGaN/GaN MQWs. the dependence on resonant interaction between the plasmons and the light emitter limits the applications of plasmonics for light emission. This dissertation presents a new non-resonant mechanism based on electrostatic interaction of carriers with induced image charges in a nearby metallic nanoparticle. Enhancement similar in strength to that of plasmonics is observed, without the restrictions imposed upon resonant interactions. in this work we demonstrate several key features of this new interaction, including intensity-dependent saturation, increase in the radiative recombination lifetime, and strongly inhomogeneous light emission. We also present a model for the interaction based on the aforementioned image charge interactions. Also discussed are results of work done in the course of this research resulting in the development of a novel technique for strain measurement ...
Contributing Partner: UNT Libraries
Effects of Dissipation on Propagation of Surface Electromagnetic and Acoustic Waves

Effects of Dissipation on Propagation of Surface Electromagnetic and Acoustic Waves

Date: May 2012
Creator: Nagaraj, Nagaraj
Description: With the recent emergence of the field of metamaterials, the study of subwavelength propagation of plane waves and the dissipation of their energy either in the form of Joule losses in the case of electomagnetic waves or in the form of viscous dissipation in the case of acoustic waves in different interfaced media assumes great importance. with this motivation, I have worked on problems in two different areas, viz., plasmonics and surface acoustics. the first part (chapters 2 & 3) of the dissertation deals with the emerging field of plasmonics. Researchers have come up with various designs in an efort to fabricate efficient plasmonic waveguides capable of guiding plasmonic signals. However, the inherent dissipation in the form of Joule losses limits efficient usage of surface plasmon signal. a dielectric-metal-¬dielectric planar structure is one of the most practical plasmonic structures that can serve as an efficient waveguide to guide electromagnetic waves along the metal-dielectric boundary. I present here a theoretical study of propagation of surface plasmons along a symmetric dielectric-metal-dielectric structure and show how proper orientation of the optical axis of the anisotropic substrate enhances the propagation length. an equation for propagation length is derived in a wide range of frequencies. ...
Contributing Partner: UNT Libraries
Modification of Graphene Properties: Electron Induced Reversible Hydrogenation, Oxidative Etching and Layer-by-layer Thinning

Modification of Graphene Properties: Electron Induced Reversible Hydrogenation, Oxidative Etching and Layer-by-layer Thinning

Date: May 2012
Creator: Jones, Jason David
Description: In this dissertation, I present the mechanism of graphene hydrogenation via three different electron sources: scanning electron microscopy, e-beam irradiation and H2 and He plasma irradiation. in each case, hydrogenation occurs due to electron impact fragmentation of adsorbed water vapor from the sample preparation process. in the proposed model, secondary and backscattered electrons generated from incident electron interactions with the underlying silicon substrate are responsible for the dissociation of water vapor. Chemisorbed H species from the dissociation are responsible for converting graphene into hydrogenated graphene, graphane. These results may lead to higher quality graphane films having a larger band gap than currently reported. in addition, the dissertation presents a novel and scalable method of controllably removing single atomic planes from multi-layer graphene using electron irradiation from an intense He plasma under a positive sample bias. As the electronic properties or multi-layer graphene are highly dependent on the number of layers, n, reducing n in certain regions has many benefits. for example, a mask in conjunction with this thinning method could be used for device applications.
Contributing Partner: UNT Libraries
Electrostatic Effects in III-V Semiconductor Based Metal-optical Nanostructures

Electrostatic Effects in III-V Semiconductor Based Metal-optical Nanostructures

Access: Use of this item is restricted to the UNT Community.
Date: May 2012
Creator: Gryczynski, Karol Grzegorz
Description: The modification of the band edge or emission energy of semiconductor quantum well light emitters due to image charge induced phenomenon is an emerging field of study. This effect observed in quantum well light emitters is critical for all metal-optics based light emitters including plasmonics, or nanometallic electrode based light emitters. This dissertation presents, for the first time, a systematic study of the image charge effect on semiconductor–metal systems. the necessity of introducing the image charge interactions is demonstrated by experiments and mathematical methods for semiconductor-metal image charge interactions are introduced and developed.
Contributing Partner: UNT Libraries
A Non-equilibrium Approach to Scale Free Networks

A Non-equilibrium Approach to Scale Free Networks

Date: August 2012
Creator: Hollingshad, Nicholas W.
Description: Many processes and systems in nature and society can be characterized as large numbers of discrete elements that are (usually non-uniformly) interrelated. These networks were long thought to be random, but in the late 1990s, Barabási and Albert found that an underlying structure did in fact exist in many natural and technological networks that are now referred to as scale free. Since then, researchers have gained a much deeper understanding of this particular form of complexity, largely by combining graph theory, statistical physics, and advances in computing technology. This dissertation focuses on out-of-equilibrium dynamic processes as they unfold on these complex networks. Diffusion in networks of non-interacting nodes is shown to be temporally complex, while equilibrium is represented by a stable state with Poissonian fluctuations. Scale free networks achieve equilibrium very quickly compared to regular networks, and the most efficient are those with the lowest inverse power law exponent. Temporally complex diffusion also occurs in networks with interacting nodes under a cooperative decision-making model. At a critical value of the cooperation parameter, the most efficient scale free network achieves consensus almost as quickly as the equivalent all-to-all network. This finding suggests that the ubiquity of scale free networks in nature ...
Contributing Partner: UNT Libraries
Theoretical and Experimental Investigations Concerning Microgels of Varied Spherical Geometries

Theoretical and Experimental Investigations Concerning Microgels of Varied Spherical Geometries

Date: August 2012
Creator: Wahrmund, Joshua Joseph
Description: Polymer gels have been studied extensively due to their ability to simulate biological tissues and to swell or collapse reversibly in response to external stimuli. This work presents a variety of studies using poly-N-isopropylacrylamide (PNIPA) hydrogels. The projects have been carried out both in the lab of Dr. Zhibing Hu and in collaboration with others outside of UNT: (1) an analysis of the swelling kinetics of microgel spherical shells prepared using a novel design of microfluidic devices; (2) a comparison of the drug-release rates between nanoparticle structures having either core or core-with-shell (core-shell) designs; (3) an investigation into the thermodynamics of swelling for microgels of exceedingly small size.
Contributing Partner: UNT Libraries
Ultrafast Spectroscopy of Hybrid Ingan/gan Quantum Wells

Ultrafast Spectroscopy of Hybrid Ingan/gan Quantum Wells

Date: August 2012
Creator: Mahat, Meg Bahadur
Description: Group III nitrides are efficient light emitters. The modification of internal optoelectronic properties of these materials due to strain, external or internal electric field are an area of interest. Insertion of metal nanoparticles (MNPs) (Ag, Au etc) inside the V-shaped inverted hexagonal pits (IHP) of InGaN/GaN quantum wells (QWs) offers the potential of improving the light emission efficiencies. We have observed redshift and blueshift due to the Au MNPs and Ag MNPs respectively. This shift could be due to the electric field created by the MNPs through electrostatic image charge. We have studied the ultrafast carrier dynamics of carriers in hybrid InGaN/GaN QWs. The change in quantum confinement stark effect due to MNPs plays an important role for slow and fast carrier dynamics. We have also observed the image charge effect on the ultrafast differential transmission measurement due to the MNPs. We have studied the non-linear absorption spectroscopy of these materials. The QWs behave as a discharging of a nanocapacitor for the screening of the piezoelectric field due to the photo-excited carriers. We have separated out screening and excitonic bleaching components from the main differential absorption spectra of InGaN/GaN QWs.
Contributing Partner: UNT Libraries
Broad-band Light Emission From Ion Implanted Silicon Nanocrystals Via Plasmonic and Non-plasmonic Effects for Optoelectronics

Broad-band Light Emission From Ion Implanted Silicon Nanocrystals Via Plasmonic and Non-plasmonic Effects for Optoelectronics

Date: December 2012
Creator: Singh, Akhilesh K.
Description: Broad band light emission ranging from the ultraviolet (UV) to the near infrared (NIR) has been observed from silicon nanoparticles fabricated using low energy (30-45 keV) metal and non-metal ion implantation with a fluence of 5*1015 ions/cm2 in crystalline Si(100). It is found from a systematic study of the annealing carried out at certain temperatures that the spectral characteristics remains unchanged except for the enhancement of light emission intensity due to annealing. The annealing results in nucleation of metal nanoclusters in the vicinity of Si nanoparticles which enhances the emission intensity. Structural and optical characterization demonstrate that the emission originates from both highly localized defect bound excitons at the Si/Sio2 interface, as well as surface and interface traps associated with the increased surface area of the Si nanocrystals. The emission in the UV is due to interband transitions from localized excitonic states at the interface of Si/SiO2 or from the surface of Si nanocrystals. The radiative efficiency of the UV emission from the Si nanoparticles can be modified by the localized surface plasmon (LSP) interaction induced by the nucleation of silver nanoparticles with controlled annealing of the samples. The UV emission from Si nanoclusters are coupled resonantly to the LSP ...
Contributing Partner: UNT Libraries
Theoretical and Experimental Investigations of Peg Based Thermo Sensitive Hydro Microgel

Theoretical and Experimental Investigations of Peg Based Thermo Sensitive Hydro Microgel

Date: December 2012
Creator: Chi, Chenglin
Description: Poly ethylene glycol (PEG) based microgels were synthesized and investigated. The PEG microgel has the same phase transition as the traditional poly N-isopropylacrylamide (PNIPAM). As a good substitute of PNIPAM, PEG microgel exhibits many advantages: it is easier to control the lower critical solution temperature (LCST) of the microgel by changing the component of copolymers; it has a more solid spherical core-shell structure to have a double thermo sensitivity; it is straightforward to add other sensitivities such as pH, magnetic field or organic functional groups; it readily forms a photonic crystal structure exhibiting Bragg diffraction; and, most importantly, the PEG microgel is biocompatible with human body and has been approved by FDA while PNIPAM has not. PEG microgels with core-shell structure are synthesized with a two-step free radical polymerization and characterized with DLS, SLS and UV–Vis. The dynamic mechanics of melting and recrystallizing of the PEG core-shell microgel are presented and discussed. Photonic crystals of PEG microgels were synthesized and characterized. The crystal can be isolated in a thin film or a bulk column. The phase transition of PEG microgel was simulated with the mean field theory. The enthalpy and entropy of phase transition can be estimated from the best ...
Contributing Partner: UNT Libraries
A New Approach for Transition Metal Free Magnetic Sic: Defect Induced Magnetism After Self-ion Implantation

A New Approach for Transition Metal Free Magnetic Sic: Defect Induced Magnetism After Self-ion Implantation

Date: May 2013
Creator: Kummari, Venkata Chandra Sekhar
Description: SiC has become an attractive wide bandgap semiconductor due to its unique physical and electronic properties and is widely used in high temperature, high frequency, high power and radiation resistant applications. SiC has been used as an alternative to Si in harsh environments such as in the oil industry, nuclear power systems, aeronautical, and space applications. SiC is also known for its polytypism and among them 3C-SiC, 4H-SiC and 6H-SiC are the most common polytypes used for research purposes. Among these polytypes 4H-SiC is gaining importance due to its easy commercial availability with a large bandgap of 3.26 eV at room temperature. Controlled creation of defects in materials is an approach to modify the electronic properties in a way that new functionality may result. SiC is a promising candidate for defect-induced magnetism on which spintronic devices could be developed. The defects considered are of room temperature stable vacancy types, eliminating the need for magnetic impurities, which easily diffuse at room temperature. Impurity free vacancy type defects can be created by implanting the host atoms of silicon or carbon. The implantation fluence determines the defect density, which is a critical parameter for defect induced magnetism. Therefore, we have studied the influence ...
Contributing Partner: UNT Libraries
Zinc Oxide Nanoparticles for Nonlinear Bioimaging, Cell Detection and Selective Cell Destruction

Zinc Oxide Nanoparticles for Nonlinear Bioimaging, Cell Detection and Selective Cell Destruction

Access: Use of this item is restricted to the UNT Community.
Date: May 2013
Creator: Urban, Ben E.
Description: Light matter interactions have led to a great part of our current understanding of the universe. When light interacts with matter it affects the properties of both the light and the matter. Visible light, being in the region that the human eye can "see," was one of the first natural phenomenon we used to learn about our universe. The application of fundamental physics research has spilled over into other fields that were traditionally separated from physics, being considered two different sciences. Current physics research has applications in all scientific fields. By taking a more physical approach to problems in fields such as chemistry and biology, we have furthered our knowledge of both. Nanocrystals have many interesting optical properties. Furthermore, the size and properties of nanocrystals has given them applications in materials ranging from solar cells to sunscreens. By understanding and controlling their interactions with systems we can utilize them to increase our knowledge in other fields of science, such as biology. Nanocrystals exhibit optical properties superior to currently used fluorescent dyes. By replacing molecular dyes with nanoparticles we can reduce toxicity, increase resolution and have better cellular targeting abilities. They have also shown to have toxicity to cancer and antibacterial ...
Contributing Partner: UNT Libraries
Criticality in Cooperative Systems

Criticality in Cooperative Systems

Date: May 2012
Creator: Vanni, Fabio
Description: Cooperative behavior arises from the interactions of single units that globally produce a complex dynamics in which the system acts as a whole. As an archetype I refer to a flock of birds. As a result of cooperation the whole flock gets special abilities that the single individuals would not have if they were alone. This research work led to the discovery that the function of a flock, and more in general, that of cooperative systems, surprisingly rests on the occurrence of organizational collapses. In this study, I used cooperative systems based on self-propelled particle models (the flock models) which have been proved to be virtually equivalent to sociological network models mimicking the decision making processes (the decision making model). The critical region is an intermediate condition between a highly disordered state and a strong ordered one. At criticality the waiting times distribution density between two consecutive collapses shows an inverse power law form with an anomalous statistical behavior. The scientific evidences are based on measures of information theory, correlation in time and space, and fluctuation statistical analysis. In order to prove the benefit for a system to live at criticality, I made a flock system interact with another similar ...
Contributing Partner: UNT Libraries
Cooperation-induced Criticality in Neural Networks

Cooperation-induced Criticality in Neural Networks

Date: August 2013
Creator: Zare, Marzieh
Description: The human brain is considered to be the most complex and powerful information-processing device in the known universe. The fundamental concepts behind the physics of complex systems motivate scientists to investigate the human brain as a collective property emerging from the interaction of thousand agents. In this dissertation, I investigate the emergence of cooperation-induced properties in a system of interacting units. I demonstrate that the neural network of my research generates a series of properties such as avalanche distribution in size and duration coinciding with the experimental results on neural networks both in vivo and in vitro. Focusing attention on temporal complexity and fractal index of the system, I discuss how to define an order parameter and phase transition. Criticality is assumed to correspond to the emergence of temporal complexity, interpreted as a manifestation of non-Poisson renewal dynamics. In addition, I study the transmission of information between two networks to confirm the criticality and discuss how the network topology changes over time in the light of Hebbian learning.
Contributing Partner: UNT Libraries
Novel Semi-Conductor Material Systems: Molecular Beam Epitaxial Growth and Characterization

Novel Semi-Conductor Material Systems: Molecular Beam Epitaxial Growth and Characterization

Date: December 2013
Creator: Elmarhoumi, Nader M.
Description: Semi-conductor industry relies heavily on silicon (Si). However, Si is not a direct-band gap semi-conductor. Consequently, Si does not possess great versatility for multi-functional applications in comparison with the direct band-gap III-V semi-conductors such as GaAs. To bridge this gap, what is ideally required is a semi-conductor material system that is based on silicon, but has significantly greater versatility. While sparsely studied, the semi-conducting silicides material systems offer great potential. Thus, I focused on the growth and structural characterization of ruthenium silicide and osmium silicide material systems. I also characterized iron silicon germanide films using extended x-ray absorption fine structure (EXAFS) to reveal phase, semi-conducting behavior, and to calculate nearest neighbor distances. The choice of these silicides material systems was due to their theoretically predicted and/or experimentally reported direct band gaps. However, the challenge was the existence of more than one stable phase/stoichiometric ratio of these materials. In order to possess the greatest control over the growth process, molecular beam epitaxy (MBE) has been employed. Structural and film quality comparisons of as-grown versus annealed films of ruthenium silicide are presented. Structural characterization and film quality of MBE grown ruthenium silicide and osmium silicide films via in situ and ex situ ...
Contributing Partner: UNT Libraries
Synthesis Strategies and a Study of Properties of Narrow and Wide Band Gap Nanowires

Synthesis Strategies and a Study of Properties of Narrow and Wide Band Gap Nanowires

Date: May 2014
Creator: Sapkota, Gopal
Description: Various techniques to synthesize nanowires and nanotubes as a function of growth temperature and time were investigated. These include growth of nanowires by a chemical vapor deposition (CVD) system using vapor-liquid-solid (VLS) growth mechanism and electro-chemical synthesis of nanowires and nanotubes. Narrow band gap InSb Eg = 0.17 eV at room temp) nanowires were successively synthesized. Using a phase diagram, the transition of the nanowire from metallic- semiconducting- semi-metallic phase was investigated. A thermodynamic model is developed to show that the occurrence of native defects in InSb nanowires influenced by the nanowire growth kinetics and thermodynamics of defect formation. Wide band gap ZnO (Eg = 3.34 eV) and In2O3 (3.7 eV) were also synthesized. ZnO nanowires and nanotubes were successfully doped with a transition metal Fe, making it a Dilute Magnetic Semiconductor of great technological relevance. Structural and electronic characterizations of nanowires were studied for different semiconducting, metallic and semi-metallic nanowires. Electron transport measurements were used to estimate intrinsic material parameters like carrier concentration and mobility. An efficient gas sensing device using a single In2O3 nanowire was studied and which showed sensitivity to reducing gas like NH3 and oxidizing gas like O2 gas at room temperature. The efficiency of the ...
Contributing Partner: UNT Libraries
Effects of Quantum Coherence and Interference

Effects of Quantum Coherence and Interference

Access: Use of this item is restricted to the UNT Community.
Date: August 2013
Creator: Davuluri, Subrahmanya Bhima Sankar
Description: Quantum coherence and interference (QCI) is a phenomenon that takes place in all multi-level atomic systems interacting with multiple lasers. In this work QCI is used to create several interesting effects like lasing without inversion (LWI), controlling group velocity of light to extreme values, controlling the direction of propagation through non-linear phase matching condition and for controlling the correlations in field fluctuations. Controlling group velocity of light is very interesting because of many novel applications it can offer. One of the unsolved problems in this area is to achieve a slow and fast light which can be tuned continuously as a function of frequency. We describe a method for creation of tunable slow and fast light by controlling intensity of incident laser fields using QCI effects. Lasers are not new to the modern world but an extreme ultra-violet laser or a x-ray laser is definitely one of the most desirable technologies today. Using QCI, we describe a method to realize lasing at high frequencies by creating lasing without inversion. Role of QCI in creating correlations and anti-correlations, which are generated by vacuum fluctuations, in a three level lambda system coupled to two strong fields is discussed.
Contributing Partner: UNT Libraries
FIRST PREV 1 2 NEXT LAST