You limited your search to:

  Partner: UNT Libraries
 Degree Discipline: Physics
 Degree Level: Doctoral
 Collection: UNT Theses and Dissertations
The Effects of Residual Gases on the Field Emission Properties of ZnO, GaN, ZnS Nanostructures, and the Effects of Light on the Resistivity of Graphene

The Effects of Residual Gases on the Field Emission Properties of ZnO, GaN, ZnS Nanostructures, and the Effects of Light on the Resistivity of Graphene

Date: May 2014
Creator: Mo, Yudong
Description: In this dissertation, I present that at a vacuum of 3×10-7 Torr, residual O2, CO2, H2 and Ar exposure do not significantly degrade the field emission (FE) properties of ZnO nanorods, but N2 exposure significantly does. I propose that this could be due to the dissociation of N2 into atomic nitrogen species and the reaction of such species with ZnO. I also present the effects of O2, CO2, H2O, N2, H2, and Ar residual gas exposure on the FE properties of GaN and ZnS nanostructure. A brief review of growth of ZnO, GaN and ZnS is provided. In addition, Cs deposition on GaN nanostructures at ultra-high vacuum results in 30% decrease in turn-on voltage and 60% in work function. The improvement in FE properties could be due to a Cs-induced space-charge layer at the surface that reduces the barrier for FE and lowers the work function. I describe a new phenomenon, in which the resistivity of CVD-grown graphene increases to a higher saturated value under light exposure, and depends on the wavelength of the light—the shorter the wavelength, the higher the resistivity. First-principle calculations and theoretical analysis based on density functional theory show that (1) a water molecule close to ...
Contributing Partner: UNT Libraries
Electrical Conduction Mechanisms in the Disordered Material System P-type Hydrogenated Amorphous Silicon

Electrical Conduction Mechanisms in the Disordered Material System P-type Hydrogenated Amorphous Silicon

Date: December 2014
Creator: Shrestha, Kiran (Engineer)
Description: The electrical and optical properties of boron doped hydrogenated amorphous silicon thin films (a-Si) were investigated to determine the effect of boron and hydrogen incorporation on carrier transport. The a-Si thin films were grown by plasma enhanced chemical vapor deposition (PECVD) at various boron concentrations, hydrogen dilutions, and at differing growth temperatures. The temperature dependent conductivity generally follows the hopping conduction model. Above a critical temperature, the dominant conduction mechanism is Mott variable range hopping conductivity (M-VRH), where p = ¼, and the carrier hopping depends on energy. However, at lower temperatures, the coulomb interaction between charge carriers becomes important and Efros-Shklosvkii variable hopping (ES-VRH) conduction, where p=1/2, must be included to describe the total conductivity. To correlate changes in electrical conductivity to changes in the local crystalline order, the transverse optical (TO) and transverse acoustic (TA) modes of the Raman spectra were studied to relate changes in short- and mid-range order to the effects of growth temperature, boron, and hydrogen incorporation. With an increase of hydrogen and/or growth temperature, both short and mid-range order improve, whereas the addition of boron results in the degradation of short range order. It is seen that there is a direct correlation between the ...
Contributing Partner: UNT Libraries
An Electro- Magneto-static Field for Confinement of Charged Particle Beams and Plasmas

An Electro- Magneto-static Field for Confinement of Charged Particle Beams and Plasmas

Date: May 2014
Creator: Pacheco, Josè L.
Description: A system is presented that is capable of confining an ion beam or plasma within a region that is essentially free of applied fields. An Artificially Structured Boundary (ASB) produces a spatially periodic set of magnetic field cusps that provides charged particle confinement. Electrostatic plugging of the magnetic field cusps enhances confinement. An ASB that has a small spatial period, compared to the dimensions of a confined plasma, generates electro- magneto-static fields with a short range. An ASB-lined volume thus constructed creates an effectively field free region near its center. It is assumed that a non-neutral plasma confined within such a volume relaxes to a Maxwell-Boltzmann distribution. Space charge based confinement of a second species of charged particles is envisioned, where the second species is confined by the space charge of the first non-neutral plasma species. An electron plasma confined within an ASB-lined volume can potentially provide confinement of a positive ion beam or positive ion plasma. Experimental as well as computational results are presented in which a plasma or charged particle beam interact with the electro- magneto-static fields generated by an ASB. A theoretical model is analyzed and solved via self-consistent computational methods to determine the behavior and equilibrium ...
Contributing Partner: UNT Libraries
Electromagnetically Modulated Sonic Structures

Electromagnetically Modulated Sonic Structures

Access: Use of this item is restricted to the UNT Community.
Date: May 2014
Creator: Walker, Ezekiel Lee
Description: Phononic crystals are structures composed of periodically arranged scatterers in a background medium that affect the transmission of elastic waves. They have garnered much interest in recent years for their macro-scale properties that can be modulated by the micro-scale components. The elastic properties of the composite materials, the contrast in the elastic properties of the composite materials, and the material arrangement all directly affect how an elastic wave will behave as it propagates through the sonic structure. The behavior of an elastic wave in a periodic structure is revealed in its transmission bandstructure, and modification of any the elastic parameters will result in tuning of the band structure. In this dissertation, a phononic crystal with properties that can be modulated using electromagnetic radiation, and more specifically, radio-frequency (RF) light will be presented.
Contributing Partner: UNT Libraries
Electron Density and Collision Frequency Studies Using a Resonant Microwave Cavity as a Probe

Electron Density and Collision Frequency Studies Using a Resonant Microwave Cavity as a Probe

Date: May 1973
Creator: Freeman, Ronald Harold
Description: Electron densities and collision frequencies were obtained on a number of gases in a dc discharge at low pressures (0.70-2mm of Hg). These measurements were performed by microwave probing of a filament of the dc discharge placed coaxially in a resonant cavity operating in a TM₀₁₀ mode. The equipment and techniques for making the microwave measurements employing the resonant cavity are described. One of the main features of this investigation is the technique of differentiating the resonance signal of the loaded cavity in order to make accurate measurements of the resonant frequency and half-power point frequencies.
Contributing Partner: UNT Libraries
Electron-Ion Time-of-Flight Coincidence Measurements of K-K Electron Capture, Cross Sections for Nitrogen, Methane, Ethylene, Ethane, Carbon Dioxide and Argon (L-K) Targets

Electron-Ion Time-of-Flight Coincidence Measurements of K-K Electron Capture, Cross Sections for Nitrogen, Methane, Ethylene, Ethane, Carbon Dioxide and Argon (L-K) Targets

Date: May 1986
Creator: Toten, Arvel D.
Description: Protons with energies ranging from 0.4 to 2.0 MeV were used to measure K-shell vacancy production cross sections (oVK) for N_2, CH_4, C_2H_4, C_2H_6, and CO_2 gas targets under single collision conditions. An electron-ion time-of-flight coincidence technique was used to determind the ration of the K-K electron capture cross section, OECK, to the K-vacancy production cross section, oVK. These ratios were then combined with the measured values of oVK to extract the K-K electron capture cross sections. Measurements were also made for protons of the same energy range but with regard to L-shell vacancy production and L-K electron capture for Ar targets. In addition, K-K electron capture cross sections were measured for 1.0 to 2.0 Mev 42He^_ ions on CH_4.
Contributing Partner: UNT Libraries
Electrostatic Effects in III-V Semiconductor Based Metal-optical Nanostructures

Electrostatic Effects in III-V Semiconductor Based Metal-optical Nanostructures

Access: Use of this item is restricted to the UNT Community.
Date: May 2012
Creator: Gryczynski, Karol Grzegorz
Description: The modification of the band edge or emission energy of semiconductor quantum well light emitters due to image charge induced phenomenon is an emerging field of study. This effect observed in quantum well light emitters is critical for all metal-optics based light emitters including plasmonics, or nanometallic electrode based light emitters. This dissertation presents, for the first time, a systematic study of the image charge effect on semiconductor–metal systems. the necessity of introducing the image charge interactions is demonstrated by experiments and mathematical methods for semiconductor-metal image charge interactions are introduced and developed.
Contributing Partner: UNT Libraries
Electrostatic Mechanism of Emission Enhancement in Hybrid Metal-semiconductor Light-emitting Heterostructures

Electrostatic Mechanism of Emission Enhancement in Hybrid Metal-semiconductor Light-emitting Heterostructures

Date: May 2012
Creator: Llopis, Antonio
Description: III-V nitrides have been put to use in a variety of applications including laser diodes for modern DVD devices and for solid-state white lighting. Plasmonics has come to the foreground over the past decade as a means for increasing the internal quantum efficiency (IQE) of devices through resonant interaction with surface plasmons which exist at metal/dielectric interfaces. Increases in emission intensity of an order of magnitude have been previously reported using silver thin-films on InGaN/GaN MQWs. the dependence on resonant interaction between the plasmons and the light emitter limits the applications of plasmonics for light emission. This dissertation presents a new non-resonant mechanism based on electrostatic interaction of carriers with induced image charges in a nearby metallic nanoparticle. Enhancement similar in strength to that of plasmonics is observed, without the restrictions imposed upon resonant interactions. in this work we demonstrate several key features of this new interaction, including intensity-dependent saturation, increase in the radiative recombination lifetime, and strongly inhomogeneous light emission. We also present a model for the interaction based on the aforementioned image charge interactions. Also discussed are results of work done in the course of this research resulting in the development of a novel technique for strain measurement ...
Contributing Partner: UNT Libraries
Emergence of Complexity from Synchronization and Cooperation

Emergence of Complexity from Synchronization and Cooperation

Date: May 2008
Creator: Geneston, Elvis L.
Description: The dynamical origin of complexity is an object of intense debate and, up to moment of writing this manuscript, no unified approach exists as to how it should be properly addressed. This research work adopts the perspective of complexity as characterized by the emergence of non-Poisson renewal processes. In particular I introduce two new complex system models, namely the two-state stochastic clocks and the integrate-and-fire stochastic neurons, and investigate its coupled dynamics in different network topologies. Based on the foundations of renewal theory, I show how complexity, as manifested by the occurrence of non-exponential distribution of events, emerges from the interaction of the units of the system. Conclusion is made on the work's applicability to explaining the dynamics of blinking nanocrystals, neuron interaction in the human brain, and synchronization processes in complex networks.
Contributing Partner: UNT Libraries
Energy Distribution of Sputtered Neutral Atoms from a Multilayer Target

Energy Distribution of Sputtered Neutral Atoms from a Multilayer Target

Date: August 2000
Creator: Bigelow, Alan W.
Description: Energy distribution measurements of sputtered neutral particles contribute to the general knowledge of sputtering, a common technique for surface analysis. In this work emphasis was placed on the measurement of energy distribution of sputtered neutral atoms from different depths. The liquid Ga-In eutectic alloy as a sample target for this study was ideal due to an extreme concentration ratio gradient between the top two monolayers. In pursuing this study, the method of sputter-initiated resonance ionization spectroscopy (SIRIS) was utilized. SIRIS employs a pulsed ion beam to initiate sputtering and tunable dye lasers for resonance ionization. Observation of the energy distribution was achieved with a position-sensitive detector. The principle behind the detector's energy resolution is time of flight (TOF) spectroscopy. For this specific detector, programmed time intervals between the sputtering pulse at the target and the ionizing laser pulse provided information leading to the energy distribution of the secondary neutral particles. This experiment contributes data for energy distributions of sputtered neutral particles to the experimental database, required by theoretical models and computer simulations for the sputtering phenomenon.
Contributing Partner: UNT Libraries
Enhancement of Mechanical, Thermal Stability, and Tribological Properties by Addition of Functionalized Reduced Graphene Oxide in Epoxy

Enhancement of Mechanical, Thermal Stability, and Tribological Properties by Addition of Functionalized Reduced Graphene Oxide in Epoxy

Date: August 2014
Creator: Shah, Rakesh K.
Description: The effects of octadecylamine-functionalized reduced graphene oxide (FRGO) on the frictional and wear properties of diglycidylether of bisphenol-A (DGEBA) epoxy are studied using a pin-on-disk tribometer. It was observed that the addition of FRGO significantly improves the tribological, mechanical, and thermal properties of epoxy matrix. Graphene oxide (GO) was functionalized with octadecylamine (ODA), and then reduction of oxygen-containing functional groups was carried out using hydrazine monohydrate. The Raman and x-ray photoelectron spectroscopy studies confirm significant reduction in oxygen-containing functional groups and formation of ODA functionalized reduced GO. The nanocomposites are prepared by adding 0.1, 0.2, 0.5 and 1.0 wt % of FRGO to the epoxy. The addition of FRGO increases by more than an order of magnitude the sliding distance during which the dynamic friction is ≤ 0.1. After this distance, the friction sharply increases to the range of 0.4 - 0.5. We explain the increase in sliding distance during which the friction is low by formation of a transfer film from the nanocomposite to the counterface. The wear rates in the low and high friction regimes are approximately 1.5 x 10-4 mm3/N·m and 5.5 x 10-4 mm3/N·m, respectively. The nanocomposites exhibit a 74 % increase in Young’s modulus with ...
Contributing Partner: UNT Libraries
An entropic approach to the analysis of time series.

An entropic approach to the analysis of time series.

Date: December 2001
Creator: Scafetta, Nicola
Description: Statistical analysis of time series. With compelling arguments we show that the Diffusion Entropy Analysis (DEA) is the only method of the literature of the Science of Complexity that correctly determines the scaling hidden within a time series reflecting a Complex Process. The time series is thought of as a source of fluctuations, and the DEA is based on the Shannon entropy of the diffusion process generated by these fluctuations. All traditional methods of scaling analysis, instead, are based on the variance of this diffusion process. The variance methods detect the real scaling only if the Gaussian assumption holds true. We call H the scaling exponent detected by the variance methods and d the real scaling exponent. If the time series is characterized by Fractional Brownian Motion, we have H¹d and the scaling can be safely determined, in this case, by using the variance methods. If, on the contrary, the time series is characterized, for example, by Lévy statistics, H ¹ d and the variance methods cannot be used to detect the true scaling. Lévy walk yields the relation d=1/(3-2H). In the case of Lévy flights, the variance diverges and the exponent H cannot be determined, whereas the scaling d ...
Contributing Partner: UNT Libraries
Evolution of Vacancy Supersaturations in MeV Si Implanted Silicon

Evolution of Vacancy Supersaturations in MeV Si Implanted Silicon

Date: May 1999
Creator: Venezia, Vincent C.
Description: High-energy Si implantation into silicon creates a net defect distribution that is characterized by an excess of interstitials near the projected range and a simultaneous excess of vacancies closer to the surface. This defect distribution is due to the spatial separation between the distributions of interstitials and vacancies created by the forward momentum transferred from the implanted ion to the lattice atom. This dissertation investigates the evolution of the near-surface vacancy excess in MeV Si-implanted silicon both during implantation and post-implant annealing. Although previous investigations have identified a vacancy excess in MeV-implanted silicon, the investigations presented in this dissertation are unique in that they are designed to correlate the free-vacancy supersaturation with the vacancies in clusters. Free-vacancy (and interstitial) supersaturations were measured with Sb (B) dopant diffusion markers. Vacancies in clusters were profiled by Au labeling; a new technique based on the observation that Au atoms trap in the presence of open-volume defects. The experiments described in this dissertation are also unique in that they were designed to isolate the deep interstitial excess from interacting with the much shallower vacancy excess during post-implant thermal processing.
Contributing Partner: UNT Libraries
An Experimental Study of Collision Broadening of some Excited Rotational States of the Bending Vibration of Methyl Cyanide

An Experimental Study of Collision Broadening of some Excited Rotational States of the Bending Vibration of Methyl Cyanide

Date: May 1993
Creator: Hajsaleh, Jamal Y. (Jamal Yousef)
Description: A double modulation microwave spectrometer is used to evaluate the linewidth parameters for some excited rotational components in the bending vibration v_8 of 13CH3 13C 15N and 13CH3C15N isotopomers of methyl cyanide. The linewidth parameters for self-broadening of the ΔJ=2←1 rotational components for the ground v_8 , 1v_8, and the 2v_8 vibrations were determined over a pressure range of 1 to 13 mtorr and at a temperature of 300 K. The double modulation technique is used to explore the high eighth derivative of the line shape profile of the spectral line. This technique proved to give good signal-to-noise ratios and enabled the recovery of weak signals. An experimental method is developed to correct for source modulation broadening. The tests of the ratios of the two inner peak's separation of the eighth derivative of the line showed that they were up to 95% similar to those for a Lorentzian line shape function. The line shapes were assumed to be Lorentzian for the theoretical analysis of the derivative profiles and comparisons were made between experiment and theory on this basis. Dipole moments for vibrationally excited states were calculated from linewidth parameters and show systematic decrease with the increase of excitation. Impact parameters ...
Contributing Partner: UNT Libraries
Experimental Synchronization of Chaotic Attractors Using Control

Experimental Synchronization of Chaotic Attractors Using Control

Date: December 1994
Creator: Newell, Timothy C. (Timothy Charles)
Description: The focus of this thesis is to theoretically and experimentally investigate two new schemes of synchronizing chaotic attractors using chaotically operating diode resonators. The first method, called synchronization using control, is shown for the first time to experimentally synchronize dynamical systems. This method is an economical scheme which can be viably applied to low dimensional dynamical systems. The other, unidirectional coupling, is a straightforward means of synchronization which can be implemented in fast dynamical systems where timing is critical. Techniques developed in this work are of fundamental importance for future problems regarding high dimensional chaotic dynamical systems or arrays of mutually linked chaotically operating elements.
Contributing Partner: UNT Libraries
Exploration of hierarchical leadership and connectivity in neural networks in vitro.

Exploration of hierarchical leadership and connectivity in neural networks in vitro.

Date: December 2008
Creator: Ham, Michael I.
Description: Living neural networks are capable of processing information much faster than a modern computer, despite running at significantly lower clock speeds. Therefore, understanding the mechanisms neural networks utilize is an issue of substantial importance. Neuronal interaction dynamics were studied using histiotypic networks growing on microelectrode arrays in vitro. Hierarchical relationships were explored using bursting (when many neurons fire in a short time frame) dynamics, pairwise neuronal activation, and information theoretic measures. Together, these methods reveal that global network activity results from ignition by a small group of burst leader neurons, which form a primary circuit that is responsible for initiating most network-wide burst events. Phase delays between leaders and followers reveal information about the nature of the connection between the two. Physical distance from a burst leader appears to be an important factor in follower response dynamics. Information theory reveals that mutual information between neuronal pairs is also a function of physical distance. Activation relationships in developing networks were studied and plating density was found to play an important role in network connectivity development. These measures provide unique views of network connectivity and hierarchical relationship in vitro which should be included in biologically meaningful models of neural networks.
Contributing Partner: UNT Libraries
Expulsion of Carriers from the Double-Barrier Quantum Well and Investigation of Its Spectral and Transport Consequences

Expulsion of Carriers from the Double-Barrier Quantum Well and Investigation of Its Spectral and Transport Consequences

Date: March 1992
Creator: Chyla, Wojciech Tadeusz
Description: In this work I investigate the expulsion of carriers from nanostructures using the double-barrier quantum well (DBQW) as an example and discuss manifestations of this effect in the spectrum of the DBQW in absence of bias, and in the tunneling current in presence of bias. Assuming equality of the Fermi energy in all regions of the considered system, I compute the relative density of carriers localized in the DBQW and conclude that a fraction of carriers is expelled from this nanostructure.
Contributing Partner: UNT Libraries
Field Dependence of Optical Properties in Quantum Well Heterostructures Within the Wentzel, Kramers, and Brillouin Approximation

Field Dependence of Optical Properties in Quantum Well Heterostructures Within the Wentzel, Kramers, and Brillouin Approximation

Date: August 1989
Creator: Wallace, Andrew B.
Description: This dissertation is a theoretical treatment of the electric field dependence of optical properties such as Quantum Confined Stark (QCS) shifts, Photoluminescence Quenching (PLQ), and Excitonic Mixing in quantum well heterostructures. The reduced spatial dimensionality in heterostructures greatly enhances these optical properties, more than in three dimensional semiconductors. Charge presence in the quantum well from doping causes the potential to bend and deviate from the ideal square well potential. A potential bending that varies as the square of distance measured from the heterostructure interfaces is derived self-consistently. This potential is used to solve the time-independent Schrodinger equation for bound state energies and wave functions within the framework of the Wentzel, Kramers, and Brillouin (WKB) approximation. The theoretical results obtained from the WKB approximation are limited to wide gap semiconductors with large split off bands such as gallium arsenide-gallium aluminum arsenide and indium gallium arsenide—indium phosphide. Quantum wells with finite confinement heights give rise to an energy dependent WKB phase. External electric and magnetic fields are incorporated into the theory for two different geometries. For electric fields applied perpendicular to the heterostructure multilayers, QCS shifts and PLQ are found to be in excellent agreement with the WKB calculations. Orthogonality between electrons ...
Contributing Partner: UNT Libraries
Fluorine Adsorption and Diffusion in Polycrystalline Silica

Fluorine Adsorption and Diffusion in Polycrystalline Silica

Date: December 1998
Creator: Jin, Jian-Yue
Description: The measurement of fluorine penetration into archeological flint artifacts using Nuclear Reaction Analysis (NRA) has been reported to be a potential dating method. However, the mechanism of how fluorine is incorporated into the flint surface, and finally transported into the bulk is not well understood. This research focuses on the study of the fluorine uptake phenomenon of flint mineral in aqueous fluoride solutions. Both theoretical and experimental approaches have been carried out. In a theoretical approach, a pipe-diffusion model was used to simulate the complicated fluorine transportation problem in flint, in which several diffusion mechanisms may be involved.
Contributing Partner: UNT Libraries
The Fractal Stochastic Point Process Model of Molecular Evolution and the Multiplicative Evolution Statistical Hypothesis

The Fractal Stochastic Point Process Model of Molecular Evolution and the Multiplicative Evolution Statistical Hypothesis

Date: May 1997
Creator: Bickel, David R. (David Robert)
Description: A fractal stochastic point process (FSPP) is used to model molecular evolution in agreement with the relationship between the variance and mean numbers of synonymous and nonsynonymous substitutions in mammals. Like other episodic models such as the doubly stochastic Poisson process, this model accounts for the large variances observed in amino acid substitution rates, but unlike other models, it also accounts for the results of Ohta's (1995) analysis of synonymous and nonsynonymous substitutions in mammalian genes. That analysis yields a power-law increase in the index of dispersion and an inverse power-law decrease in the coefficient of variation with the mean number of substitutions, as predicted by the FSPP model but not by the doubly stochastic Poisson model. This result is compatible with the selection theory of evolution and the nearly-neutral theory of evolution.
Contributing Partner: UNT Libraries
Fractional Brownian motion and dynamic approach to complexity.

Fractional Brownian motion and dynamic approach to complexity.

Date: August 2007
Creator: Cakir, Rasit
Description: The dynamic approach to fractional Brownian motion (FBM) establishes a link between non-Poisson renewal process with abrupt jumps resetting to zero the system's memory and correlated dynamic processes, whose individual trajectories keep a non-vanishing memory of their past time evolution. It is well known that the recrossing times of the origin by an ordinary 1D diffusion trajectory generates a distribution of time distances between two consecutive origin recrossing times with an inverse power law with index m=1.5. However, with theoretical and numerical arguments, it is proved that this is the special case of a more general condition, insofar as the recrossing times produced by the dynamic FBM generates process with m=2-H. Later, the model of ballistic deposition is studied, which is as a simple way to establish cooperation among the columns of a growing surface, to show that cooperation generates memory properties and, at same time, non-Poisson renewal events. Finally, the connection between trajectory and density memory is discussed, showing that the trajectory memory does not necessarily yields density memory, and density memory might be compatible with the existence of abrupt jumps resetting to zero the system's memory.
Contributing Partner: UNT Libraries
Fractional Calculus and Dynamic Approach to Complexity

Fractional Calculus and Dynamic Approach to Complexity

Date: December 2015
Creator: Beig, Mirza Tanweer Ahmad
Description: Fractional calculus enables the possibility of using real number powers or complex number powers of the differentiation operator. The fundamental connection between fractional calculus and subordination processes is explored and affords a physical interpretation for a fractional trajectory, that being an average over an ensemble of stochastic trajectories. With an ensemble average perspective, the explanation of the behavior of fractional chaotic systems changes dramatically. Before now what has been interpreted as intrinsic friction is actually a form of non-Markovian dissipation that automatically arises from adopting the fractional calculus, is shown to be a manifestation of decorrelations between trajectories. Nonlinear Langevin equation describes the mean field of a finite size complex network at criticality. Critical phenomena and temporal complexity are two very important issues of modern nonlinear dynamics and the link between them found by the author can significantly improve the understanding behavior of dynamical systems at criticality. The subject of temporal complexity addresses the challenging and especially helpful in addressing fundamental physical science issues beyond the limits of reductionism.
Contributing Partner: UNT Libraries
Growth and Characterization of β-Iron Disilicide, β-Iron Silicon Germanide, and Osmium Silicides

Growth and Characterization of β-Iron Disilicide, β-Iron Silicon Germanide, and Osmium Silicides

Date: August 2009
Creator: Cottier, Ryan James
Description: The semiconducting silicides offer significant potential for use in optoelectronic devices. Full implementation of the materials, however, requires the ability to tailor the energy gap and band structure to permit the synthesis of heterojunctions. One promising approach is to alloy the silicides with Ge. As part of an investigation into the synthesis of semiconducting silicide heterostructures, a series of β-Fe(Si1−xGex)2 epilayer samples, with nominal alloy content in the range 0 < x < 0.15, have been prepared by molecular beam epitaxy on Si(100). I present results of the epitaxial and crystalline quality of the films, as determined by reflection high-energy electron diffraction, Rutherford backscattering spectroscopy, and double crystal x-ray diffraction, and of the band gap dependence on the alloy composition, as determined by Fourier transform infrared spectroscopy. A reduction in band gap was observed with increasing Ge content, in agreement with previous theoretical predictions. However Ge segregation was also observed in β-Fe(Si1−xGex)2 epilayers when x > 0.04. Osmium silicide films have been grown by molecular beam epitaxy on Si(100). The silicides have been grown using e-beam evaporation sources for both Os and Si onto Si(100) substrates at varying growth rates and temperatures ranging from 600-700ºC. The resulting films have been ...
Contributing Partner: UNT Libraries
High Efficiency High Power Blue Laser by Resonant Doubling in PPKTP

High Efficiency High Power Blue Laser by Resonant Doubling in PPKTP

Date: August 2011
Creator: Danekar, Koustubh
Description: I developed a high power blue laser for use in scientific and technical applications (eg. precision spectroscopy, semiconductor inspection, flow cytometry, etc). It is linearly polarized, single longitudinal and single transverse mode, and a convenient fiber coupled continuous wave (cw) laser source. My technique employs external cavity frequency doubling and provides better power and beam quality than commercially available blue diode lasers. I use a fiber Bragg grating (FBG) stabilized infrared (IR) semiconductor laser source with a polarization maintaining (PM) fiber coupled output. Using a custom made optical and mechanical design this output is coupled with a mode matching efficiency of 96% into the doubling cavity. With this carefully designed and optimized cavity, measurements were carried out at various fundamental input powers. A net efficie ncy of 81 % with an output power of 680 mW at 486 nm was obtained using 840 mW of IR input. Also I report an 87.5 % net efficiency in coupling of blue light from servo locked cavity into a single mode PM fiber. Thus I have demonstrated a total fiber to fiber efficiency of 71% can be achieved in our approach using periodically poled potassium titanyl phosphate (PPKTP). To obtain these results, all ...
Contributing Partner: UNT Libraries