You limited your search to:

  Partner: UNT Libraries
 Degree Discipline: Physics
 Degree Level: Doctoral
 Collection: UNT Theses and Dissertations
Dielectric Relaxation of Aqueous Solutions at Microwave Frequencies for 3[less than or equal to]f[less than or equal to]35 GHz. Using a Loaded Microwave Cavity Operating in the TM010 Mode

Dielectric Relaxation of Aqueous Solutions at Microwave Frequencies for 3[less than or equal to]f[less than or equal to]35 GHz. Using a Loaded Microwave Cavity Operating in the TM010 Mode

Date: August 1994
Creator: Wang, Henry F. S. (Henry Fu-Sen)
Description: The frequency dependence and temperature dependence of the complex dielectric constant of water is of great interest. The temperature dependence of the physical properties of water given in the literature, specific heat, thermal conductivity, electric conductivity, pH, etc. are compared to the a. c. (microwave) and d. c. conductivity of water with a variety of concentration of different substances such as HC1, NaCl, HaS04, etc. When each of these properties is plotted versus inverse absolute temperature, it can be seen that each sample shows "transition temperatures". In this work, Slater's perturbation equations for a resonant microwave cavity were used to analyze the experimental results for the microwave data.
Contributing Partner: UNT Libraries
Distribution of Nighttime F-region Molecular Ion Concentrations and 6300 Å Nightglow Morphology

Distribution of Nighttime F-region Molecular Ion Concentrations and 6300 Å Nightglow Morphology

Date: December 1970
Creator: Brasher, William Ernest, 1939-
Description: The purpose of this study is two-fold. The first is to determine the dependence of the molecular ion profiles on the various ionospheric and atmospheric parameters that affect their distributions. The second is to demonstrate the correlation of specific ionospheric parameters with 6300 Å nightglow intensity during periods of magnetically quiet and disturbed conditions.
Contributing Partner: UNT Libraries
A dynamic and thermodynamic approach to complexity.

A dynamic and thermodynamic approach to complexity.

Date: August 2003
Creator: Yang, Jin
Description: The problem of establishing the correct approach to complexity is a very hot and crucial issue to which this dissertation gives some contributions. This dissertation considers two main possibilities, one, advocated by Tsallis and co-workers, setting the foundation of complexity on a generalized, non-extensive , form of thermodynamics, and another, proposed by the UNT Center for Nonlinear Science, on complexity as a new condition that, for physical systems, would be equivalent to a state of matter intermediate between dynamics and thermodynamics. In the first part of this dissertation, the concept of Kolmogorov-Sinai entropy is introduced. The Pesin theorem is generalized in the formalism of Tsallis non-extensive thermodynamics. This generalized form of Pesin theorem is used in the study of two major classes of problems, whose prototypes are given by the Manneville and the logistic map respectively. The results of these studies convince us that the approach to complexity must be made along lines different from those of the non-extensive thermodynamics. We have been convinced that the Lévy walk can be used as a prototype model of complexity, as a condition of balance between order and randomness that yields new phenomena such as aging, and multifractality. We reach the conclusions that ...
Contributing Partner: UNT Libraries
The dynamic foundation of fractal operators.

The dynamic foundation of fractal operators.

Date: May 2003
Creator: Bologna, Mauro
Description: The fractal operators discussed in this dissertation are introduced in the form originally proposed in an earlier book of the candidate, which proves to be very convenient for physicists, due to its heuristic and intuitive nature. This dissertation proves that these fractal operators are the most convenient tools to address a number of problems in condensed matter, in accordance with the point of view of many other authors, and with the earlier book of the candidate. The microscopic foundation of the fractal calculus on the basis of either classical or quantum mechanics is still unknown, and the second part of this dissertation aims at this important task. This dissertation proves that the adoption of a master equation approach, and so of probabilistic as well as dynamical argument yields a satisfactory solution of the problem, as shown in a work by the candidate already published. At the same time, this dissertation shows that the foundation of Levy statistics is compatible with ordinary statistical mechanics and thermodynamics. The problem of the connection with the Kolmogorov-Sinai entropy is a delicate problem that, however, can be successfully solved. The derivation from a microscopic Liouville-like approach based on densities, however, is shown to be impossible. ...
Contributing Partner: UNT Libraries
EEG, Alpha Waves and Coherence

EEG, Alpha Waves and Coherence

Date: May 2010
Creator: Ascolani, Gianluca
Description: This thesis addresses some theoretical issues generated by the results of recent analysis of EEG time series proving the brain dynamics are driven by abrupt changes making them depart from the ordinary Poisson condition. These changes are renewal, unpredictable and non-ergodic. We refer to them as crucial events. How is it possible that this form of randomness be compatible with the generation of waves, for instance alpha waves, whose observation seems to suggest the opposite view the brain is characterized by surprisingly extended coherence? To shed light into this apparently irretrievable contradiction we propose a model based on a generalized form of Langevin equation under the influence of a periodic stimulus. We assume that there exist two different forms of time, a subjective form compatible with Poisson statistical physical and an objective form that is accessible to experimental observation. The transition from the former to the latter form is determined by the brain dynamics interpreted as emerging from the cooperative interaction among many units that, in the absence of cooperation would generate Poisson fluctuations. We call natural time the brain internal time and we make the assumption that in the natural time representation the time evolution of the EEG variable ...
Contributing Partner: UNT Libraries
The Effect of Average Grain Size on Polycrystalline Diamond Films

The Effect of Average Grain Size on Polycrystalline Diamond Films

Date: May 2002
Creator: Abbott, Patrick Roland
Description: The work function of hydrogen-terminated, polycrystalline diamond was studied using ultraviolet photoelectron spectroscopy. Polycrystalline diamond films were deposited onto molybdenum substrates by electrophoresis for grain sizes ranging from 0.3 to 108 microns. The work function and electron affinity were measured using 21.2 eV photons from a helium plasma source. The films were characterized by x-ray photoelectron spectroscopy to determine elemental composition and the sp2/sp3 carbon fraction. The percentage of (111) diamond was determined by x-ray diffraction, and scanning electron microscopy was performed to determine average grain size. The measured work function has a maximum of 5.1 eV at 0.3 microns, and decreases to 3.2 eV at approximately 4 microns. Then the work function increases with increasing grain size to 4.0 eV at 15 microns and then asymptotically approaches the 4.8 eV work function of single crystal diamond at 108 microns. These results are consistent with a 3-component model in which the work function is controlled by single-crystal (111) diamond at larger grain sizes, graphitic carbon at smaller grain sizes, and by the electron affinity for the intervening grain sizes.
Contributing Partner: UNT Libraries
The Effects of Cesium Deposition and Gas Exposure on the Field Emission Properties of Single Wall and Multiwall Carbon Nanotubes

The Effects of Cesium Deposition and Gas Exposure on the Field Emission Properties of Single Wall and Multiwall Carbon Nanotubes

Date: May 2002
Creator: Wadhawan, Atul
Description: The effects of Cs deposition on the field emission (FE) properties of single-walled carbon nanotube (SWNT) bundles were studied. In addition, a comparative study was made on the effects of O2, Ar and H2 gases on the field emission properties of SWNT bundles and multiwall carbon nanotubes (MWNTs). We observed that Cs deposition decreases the turn-on field for FE by a factor of 2.1 - 2.9 and increases the FE current by 6 orders of magnitude. After Cs deposition, the FE current versus voltage (I-V) curves showed non-Fowler-Nordheim behavior at large currents consistent with tunneling from adsorbate states. At lower currents, the ratio of the slope of the FE I-V curves before and after Cs deposition was approximately 2.1. Exposure to N2 does not decrease the FE current, while exposure to O2 decreases the FE current. Our results show that cesiated SWNT bundles have great potential as economical and reliable vacuum electron sources. We find that H2 and Ar gases do not significantly affect the FE properties of SWNTs or MWNTs. O2 temporarily reduces the FE current and increases the turn-on voltage of SWNTs. Full recovery of these properties occurred after operation in UHV. The higher operating voltages in an ...
Contributing Partner: UNT Libraries
Effects of Dissipation on Propagation of Surface Electromagnetic and Acoustic Waves

Effects of Dissipation on Propagation of Surface Electromagnetic and Acoustic Waves

Date: May 2012
Creator: Nagaraj, Nagaraj
Description: With the recent emergence of the field of metamaterials, the study of subwavelength propagation of plane waves and the dissipation of their energy either in the form of Joule losses in the case of electomagnetic waves or in the form of viscous dissipation in the case of acoustic waves in different interfaced media assumes great importance. with this motivation, I have worked on problems in two different areas, viz., plasmonics and surface acoustics. the first part (chapters 2 & 3) of the dissertation deals with the emerging field of plasmonics. Researchers have come up with various designs in an efort to fabricate efficient plasmonic waveguides capable of guiding plasmonic signals. However, the inherent dissipation in the form of Joule losses limits efficient usage of surface plasmon signal. a dielectric-metal-¬dielectric planar structure is one of the most practical plasmonic structures that can serve as an efficient waveguide to guide electromagnetic waves along the metal-dielectric boundary. I present here a theoretical study of propagation of surface plasmons along a symmetric dielectric-metal-dielectric structure and show how proper orientation of the optical axis of the anisotropic substrate enhances the propagation length. an equation for propagation length is derived in a wide range of frequencies. ...
Contributing Partner: UNT Libraries
Effects of Quantum Coherence and Interference

Effects of Quantum Coherence and Interference

Access: Use of this item is restricted to the UNT Community.
Date: August 2013
Creator: Davuluri, Subrahmanya Bhima Sankar
Description: Quantum coherence and interference (QCI) is a phenomenon that takes place in all multi-level atomic systems interacting with multiple lasers. In this work QCI is used to create several interesting effects like lasing without inversion (LWI), controlling group velocity of light to extreme values, controlling the direction of propagation through non-linear phase matching condition and for controlling the correlations in field fluctuations. Controlling group velocity of light is very interesting because of many novel applications it can offer. One of the unsolved problems in this area is to achieve a slow and fast light which can be tuned continuously as a function of frequency. We describe a method for creation of tunable slow and fast light by controlling intensity of incident laser fields using QCI effects. Lasers are not new to the modern world but an extreme ultra-violet laser or a x-ray laser is definitely one of the most desirable technologies today. Using QCI, we describe a method to realize lasing at high frequencies by creating lasing without inversion. Role of QCI in creating correlations and anti-correlations, which are generated by vacuum fluctuations, in a three level lambda system coupled to two strong fields is discussed.
Contributing Partner: UNT Libraries
The Effects of Residual Gases on the Field Emission Properties of Zno, Gan, Zns Nanostructures, and the Effects of Light on the Resistivity of Graphene

The Effects of Residual Gases on the Field Emission Properties of Zno, Gan, Zns Nanostructures, and the Effects of Light on the Resistivity of Graphene

Date: May 2014
Creator: Mo, Yudong
Description: In this dissertation, I present that at a vacuum of 3×10-7 Torr, residual O2, CO2, H2 and Ar exposure do not significantly degrade the field emission (FE) properties of ZnO nanorods, but N2 exposure significantly does. I propose that this could be due to the dissociation of N2 into atomic nitrogen species and the reaction of such species with ZnO. I also present the effects of O2, CO2, H2O, N2, H2, and Ar residual gas exposure on the FE properties of GaN and ZnS nanostructure. A brief review of growth of ZnO, GaN and ZnS is provided. In addition, Cs deposition on GaN nanostructures at ultra-high vacuum results in 30% decrease in turn-on voltage and 60% in work function. The improvement in FE properties could be due to a Cs-induced space-charge layer at the surface that reduces the barrier for FE and lowers the work function. I describe a new phenomenon, in which the resistivity of CVD-grown graphene increases to a higher saturated value under light exposure, and depends on the wavelength of the light—the shorter the wavelength, the higher the resistivity. First-principle calculations and theoretical analysis based on density functional theory show that (1) a water molecule close to ...
Contributing Partner: UNT Libraries