## You limited your search to:

**Partner:**UNT Libraries

**Degree Discipline:**Physics

**Degree Level:**Doctoral

**Collection:**UNT Theses and Dissertations

### Work Function Study of Iridium Oxide and Molybdenum Using UPS and Simultaneous Fowler-Nordheim I-V Plots with Field Emission Energy Distributions

**Date:**August 1999

**Creator:**Bernhard, John Michael

**Description:**The characterization of work functions and field emission stability for molybdenum and iridium oxide coatings was examined. Single emission tips and flat samples of molybdenum and iridium oxide were prepared for characterization. The flat samples were characterized using X-ray Photoelectron Spectroscopy and X-ray diffraction to determine elemental composition, chemical shift, and crystal structure. Flat coatings of iridium oxide were also scanned by Atomic Force Microscopy to examine topography. Work functions were characterized by Ultraviolet Photoelectron Spectroscopy from the flat samples and by Field Emission Electron Distributions from the field emission tips. Field emission characterization was conducted in a custom build analytical chamber capable of measuring Field Emission Electron Distribution and Fowler-Nordheim I-V plots simultaneously to independently evaluate geometric and work function changes. Scanning Electron Microscope pictures were taken of the emission tips before and after field emission characterization to confirm geometric changes. Measurement of emission stability and work functions were the emphasis of this research. In addition, use of iridium oxide coatings to enhance emission stability was evaluated. Molybdenum and iridium oxide, IrO2, were characterized and found to have a work function of 4.6 eV and 4.2 eV by both characterization techniques, with the molybdenum value in agreement with previous ...

**Contributing Partner:**UNT Libraries

**Permallink:**digital.library.unt.edu/ark:/67531/metadc2211/

### Picosecond Dynamics of Free-Carrier Populations, Space-Charge Fields, and Photorefractive Nonlinearities in Zincblende Semiconductors

**Date:**August 1999

**Creator:**Stark, Thomas S.

**Description:**Generally, nonlinear optics studies investigate optically-induced changes in refraction or absorption, and their application to spectroscopy or device fabrication. The photorefractive effect is a nonlinear optical effect that occurs in solids, where transport of an optically-induced free-carrier population results in an internal space-charge field, which produces an index change via the linear electrooptic effect. The photorefractive effect has been widely studied for a variety of materials and device applications, mainly because it allows large index changes to be generated with laser beams having only a few milliwatts of average power.Compound semiconductors are important photorefractive materials because they offer a near-infrared optical response, and because their carrier transport properties allow the index change to be generated quickly and efficiently. While many researchers have attempted to measure the fundamental temporal dynamics of the photorefractive effect in semiconductors using continuous-wave, nanosecond- and picosecond-pulsed laser beams, these investigations have been unsuccessful. However, studies with this goal are of clear relevance because they provide information about the fundamental physical processes that produce this effect, as well as the material's speed and efficiency limitations for device applications.In this dissertation, for the first time, we time-resolve the temporal dynamics of the photorefractive nonlinearities in two zincblende semiconductors, ...

**Contributing Partner:**UNT Libraries

**Permallink:**digital.library.unt.edu/ark:/67531/metadc2202/

### Microstructure and Electronic Structures of Er-Doped Si Nano-particles Synthesized by Vapor Phase Pyrolysis

**Access:**Use of this item is restricted to the UNT Community.

**Date:**May 2000

**Creator:**Chen, Yandong

**Description:**Si nanoparticles are new prospective optoelectronic materials. Unlike bulk Si cry-stals, Si nanoparticles display intriguing room-temperature photoluminescence. A major challenge in the fabrication of Si nanoparticles is the control of their size distribution. The rare-earth element Er has unique photo emission properties, including low pumping power, and a temperature independent, sharp spectrum. The emission wavelength matches the transmission window of optical fibers used in the telecommunications industry. Therefore, the study of Er-doped Si nanoparticles may have practical significance. The goals of the research described in this dissertation are to investigate vapor phase pyrolysis methods and to characterize the microstructure and associated defects, particles size distributions and photoluminescence efficiencies of doped and undoped Si nanoparticles using analytical transmission electron microscopy, high resolution electron microscopy, and optical spectroscopy. Er-doped and undoped Si nanoparticles were synthesized via vapor-phase pyrolysis of disilane at Texas Christian University. To achieve monodisperse size distributions, a process with fast nucleation and slow growth was employed. Disilane was diluted to 0.48% with helium. A horizontal pyrolysis oven was maintained at a temperature of 1000 °C. The oven length was varied from 1.5 cm to 6.0 cm to investigate the influence of oven length on the properties of the nanoparticles. ...

**Contributing Partner:**UNT Libraries

**Permallink:**digital.library.unt.edu/ark:/67531/metadc2476/

### Charge Collection Studies on Integrated Circuit Test Structures using Heavy-Ion Microbeams and MEDICI Simulation Calculations

**Date:**May 2000

**Creator:**Guo, Baonian

**Description:**Ion induced charge collection dynamics within Integrated Circuits (ICs) is important due to the presence of ionizing radiation in the IC environment. As the charge signals defining data states are reduced by voltage and area scaling, the semiconductor device will naturally have a higher susceptibility to ionizing radiation induced effects. The ionizing radiation can lead to the undesired generation and migration of charge within an IC. This can alter, for example, the memory state of a bit, and thereby produce what is called a "soft" error, or Single Event Upset (SEU). Therefore, the response of ICs to natural radiation is of great concern for the reliability of future devices. Immunity to soft errors is listed as a requirement in the 1997 National Technology Roadmap for Semiconductors prepared by the Semiconductor Industry Association in the United States. To design more robust devices, it is essential to create and test accurate models of induced charge collection and transport in semiconductor devices. A heavy ion microbeam produced by an accelerator is an ideal tool to study charge collection processes in ICs and to locate the weak nodes and structures for improvement through hardening design. In this dissertation, the Ion Beam Induced Charge Collection ...

**Contributing Partner:**UNT Libraries

**Permallink:**digital.library.unt.edu/ark:/67531/metadc2469/

### Scanning Tunneling Microscopy of Homo-Epitaxial Chemical Vapor Deposited Diamond (100) Films

**Access:**Use of this item is restricted to the UNT Community.

**Date:**May 2000

**Creator:**Stallcup, Richard E.

**Description:**Atomic resolution images of hot-tungsten filament chemical-vapor-deposition (CVD) grown epitaxial diamond (100) films obtained in ultrahigh vacuum (UHV) with a scanning tunneling microscope (STM) are reported. A (2x1) dimer surface reconstruction and amorphous atomic regions were observed on the hydrogen terminated (100) surface. The (2x1) unit cell was measured to be 0.51"0.01 x 0.25"0.01 nm2. The amorphous regions were identified as amorphous carbon. After CVD growth, the surface of the epitaxial films was amorphous at the atomic scale. After 2 minutes of exposure to atomic hydrogen at 30 Torr and the sample temperature at 500° C, the surface was observed to consist of amorphous regions and (2x1) dimer reconstructed regions. After 5 minutes of exposure to atomic hydrogen, the surface was observed to consist mostly of (2x1) dimer reconstructed regions. These observations support a recent model for CVD diamond growth that is based on an amorphous carbon layer that is etched or converted to diamond by atomic hydrogen. With further exposure to atomic hydrogen at 500° C, etch pits were observed in the shape of inverted pyramids with {111} oriented sides. The temperature dependence of atomic hydrogen etching of the diamond (100) surface was also investigated using UHV STM, and ...

**Contributing Partner:**UNT Libraries

**Permallink:**digital.library.unt.edu/ark:/67531/metadc2446/

### Energy Distribution of Sputtered Neutral Atoms from a Multilayer Target

**Date:**August 2000

**Creator:**Bigelow, Alan W.

**Description:**Energy distribution measurements of sputtered neutral particles contribute to the general knowledge of sputtering, a common technique for surface analysis. In this work emphasis was placed on the measurement of energy distribution of sputtered neutral atoms from different depths. The liquid Ga-In eutectic alloy as a sample target for this study was ideal due to an extreme concentration ratio gradient between the top two monolayers. In pursuing this study, the method of sputter-initiated resonance ionization spectroscopy (SIRIS) was utilized. SIRIS employs a pulsed ion beam to initiate sputtering and tunable dye lasers for resonance ionization. Observation of the energy distribution was achieved with a position-sensitive detector. The principle behind the detector's energy resolution is time of flight (TOF) spectroscopy. For this specific detector, programmed time intervals between the sputtering pulse at the target and the ionizing laser pulse provided information leading to the energy distribution of the secondary neutral particles. This experiment contributes data for energy distributions of sputtered neutral particles to the experimental database, required by theoretical models and computer simulations for the sputtering phenomenon.

**Contributing Partner:**UNT Libraries

**Permallink:**digital.library.unt.edu/ark:/67531/metadc2657/

### Nested Well Plasma Traps

**Date:**August 2000

**Creator:**Dolliver, Darrell

**Description:**Criteria for the confinement of plasmas consisting of a positive and negative component in Penning type traps with nested electric potential wells are presented. Computational techniques for the self-consistent calculation of potential and plasma density distributions are developed. Analyses are presented of the use of nested well Penning traps for several applications. The analyses include: calculations of timescales relevant to the applications, e.g. reaction, confinement and relaxation timescales, self-consistent computations, and consideration of other physical phenomenon important to the applications. Possible applications of a nested well penning trap include production of high charge state ions, studies of high charge state ions, and production of antihydrogen. In addition the properties of a modified Penning trap consisting of an electric potential well applied along a radial magnetic field are explored.

**Contributing Partner:**UNT Libraries

**Permallink:**digital.library.unt.edu/ark:/67531/metadc2647/

### Space-Charge Saturation and Current Limits in Cylindrical Drift Tubes and Planar Sheaths

**Date:**August 2000

**Creator:**Stephens, Kenneth Frank

**Description:**Space-charge effects play a dominant role in many areas of physics. In high-power microwave devices using high-current, relativistic electron beams, it places a limit on the amount of radiation a device can produce. Because the beam's space-charge can actually reflect a portion of the beam, the ability to accurately predict the amount of current a device can carry is needed. This current value is known as the space-charge limited current. Because of the mathematical difficulties, this limit is typically estimated from a one-dimensional theory. This work presents a two-dimensional theory for calculating an upper-bound for the space-charge limited current of relativistic electron beams propagating in grounded coaxial drift tubes. Applicable to annular beams of arbitrary radius and thickness, the theory includes the effect introduced by a finite-length drift tube of circular cross-section. Using Green's second identity, the need to solve Poisson's equation is transferred to solving a Sturm-Liouville eigenvalue problem, which is easily solved by elementary methods. In general, the resulting eigenvalue, which is required to estimate the limiting current, must be numerically determined. However, analytic expressions can be found for frequently encountered limiting cases. Space-charge effects also produce the fundamental collective behavior found in plasmas, especially in plasma sheaths. ...

**Contributing Partner:**UNT Libraries

**Permallink:**digital.library.unt.edu/ark:/67531/metadc2598/

### The Stopping of Energetic Si, P and S Ions in Ni, Cu, Ge and GaAs Targets

**Access:**Use of this item is restricted to the UNT Community.

**Date:**December 2001

**Creator:**Nigam, Mohit

**Description:**Accurate knowledge of stopping powers is essential for these for quantitative analysis and surface characterization of thin films using ion beam analysis (IBA). These values are also of interest in radiobiology and radiotherapy, and in ion- implantation technology where shrinking feature sizes puts high demands on the accuracy of range calculations. A theory that predicts stopping powers and ranges for all projectile-target combinations is needed. The most important database used to report the stopping powers is the SRIM/TRIM program developed by Ziegler and coworkers. However, other researchers report that at times, these values differ significantly from experimental values. In this study the stopping powers of Si, P and S ions have been measured in Ni, Cu, Ge and GaAs absorbers in the energy range ~ 2-10 MeV. For elemental films of Ni, Cu and Ge, the stopping of heavy ions was measured using a novel ERD (Elastic Recoil Detection) based technique. In which an elastically recoiled lighter atom is used to indirectly measure the energy of the incoming heavy ion using a surface barrier detector. In this way it was possible to reduce the damage and to improve the FWHM of the detector. The results were compared to SRIM-2000 predictions ...

**Contributing Partner:**UNT Libraries

**Permallink:**digital.library.unt.edu/ark:/67531/metadc3004/

### A Statistical Study of Hard X-Ray Solar Flares

**Date:**December 2001

**Creator:**Leddon, Deborah L.

**Description:**The results of a statistical study of hard x-ray solar flares are presented in this dissertation. Two methods of analysis were used, the Diffusion Entropy (DE) method coupled with an analysis of the data distributions and the Rescaled Range (R/S) Method, sometimes referred to as "Hurst's method". Chapter one provides an introduction to hard x-ray flares within the context of the solar environment and a summary of the statistical paradigms solar astronomers currently work under. Chapter two presents the theory behind the DE and R/S methods. Chapter three presents the results of the two analysis methodologies: most notably important evidence of the conflicting results of the R/S and DE methods, evidence of a Levy statistical signature for the underlying dynamics of the hard x-ray flaring process and a possible separate memory signature for the waiting times. In addition, the stationary and nonstationary characteristics of the waiting times and peak intensities, are revealed. Chapter four provides a concise summary and discussion of the results.

**Contributing Partner:**UNT Libraries

**Permallink:**digital.library.unt.edu/ark:/67531/metadc3045/

### An entropic approach to the analysis of time series.

**Date:**December 2001

**Creator:**Scafetta, Nicola

**Description:**Statistical analysis of time series. With compelling arguments we show that the Diffusion Entropy Analysis (DEA) is the only method of the literature of the Science of Complexity that correctly determines the scaling hidden within a time series reflecting a Complex Process. The time series is thought of as a source of fluctuations, and the DEA is based on the Shannon entropy of the diffusion process generated by these fluctuations. All traditional methods of scaling analysis, instead, are based on the variance of this diffusion process. The variance methods detect the real scaling only if the Gaussian assumption holds true. We call H the scaling exponent detected by the variance methods and d the real scaling exponent. If the time series is characterized by Fractional Brownian Motion, we have H¹d and the scaling can be safely determined, in this case, by using the variance methods. If, on the contrary, the time series is characterized, for example, by Lévy statistics, H ¹ d and the variance methods cannot be used to detect the true scaling. Lévy walk yields the relation d=1/(3-2H). In the case of Lévy flights, the variance diverges and the exponent H cannot be determined, whereas the scaling d ...

**Contributing Partner:**UNT Libraries

**Permallink:**digital.library.unt.edu/ark:/67531/metadc3033/

### The Effect of Average Grain Size on Polycrystalline Diamond Films

**Date:**May 2002

**Creator:**Abbott, Patrick Roland

**Description:**The work function of hydrogen-terminated, polycrystalline diamond was studied using ultraviolet photoelectron spectroscopy. Polycrystalline diamond films were deposited onto molybdenum substrates by electrophoresis for grain sizes ranging from 0.3 to 108 microns. The work function and electron affinity were measured using 21.2 eV photons from a helium plasma source. The films were characterized by x-ray photoelectron spectroscopy to determine elemental composition and the sp2/sp3 carbon fraction. The percentage of (111) diamond was determined by x-ray diffraction, and scanning electron microscopy was performed to determine average grain size. The measured work function has a maximum of 5.1 eV at 0.3 microns, and decreases to 3.2 eV at approximately 4 microns. Then the work function increases with increasing grain size to 4.0 eV at 15 microns and then asymptotically approaches the 4.8 eV work function of single crystal diamond at 108 microns. These results are consistent with a 3-component model in which the work function is controlled by single-crystal (111) diamond at larger grain sizes, graphitic carbon at smaller grain sizes, and by the electron affinity for the intervening grain sizes.

**Contributing Partner:**UNT Libraries

**Permallink:**digital.library.unt.edu/ark:/67531/metadc3164/

### The Effects of Cesium Deposition and Gas Exposure on the Field Emission Properties of Single Wall and Multiwall Carbon Nanotubes

**Date:**May 2002

**Creator:**Wadhawan, Atul

**Description:**The effects of Cs deposition on the field emission (FE) properties of single-walled carbon nanotube (SWNT) bundles were studied. In addition, a comparative study was made on the effects of O2, Ar and H2 gases on the field emission properties of SWNT bundles and multiwall carbon nanotubes (MWNTs). We observed that Cs deposition decreases the turn-on field for FE by a factor of 2.1 - 2.9 and increases the FE current by 6 orders of magnitude. After Cs deposition, the FE current versus voltage (I-V) curves showed non-Fowler-Nordheim behavior at large currents consistent with tunneling from adsorbate states. At lower currents, the ratio of the slope of the FE I-V curves before and after Cs deposition was approximately 2.1. Exposure to N2 does not decrease the FE current, while exposure to O2 decreases the FE current. Our results show that cesiated SWNT bundles have great potential as economical and reliable vacuum electron sources. We find that H2 and Ar gases do not significantly affect the FE properties of SWNTs or MWNTs. O2 temporarily reduces the FE current and increases the turn-on voltage of SWNTs. Full recovery of these properties occurred after operation in UHV. The higher operating voltages in an ...

**Contributing Partner:**UNT Libraries

**Permallink:**digital.library.unt.edu/ark:/67531/metadc3110/

### Monte Carlo simulation and experimental studies of the production of neutron-rich medical isotopes using a particle accelerator.

**Access:**Use of this item is restricted to the UNT Community.

**Date:**May 2002

**Creator:**Rosencranz, Daniela Necsoiu

**Description:**The developments of nuclear medicine lead to an increasing demand for the production of radioisotopes with suitable nuclear and chemical properties. Furthermore, from the literature it is evident that the production of radioisotopes using charged-particle accelerators instead of nuclear reactors is gaining increasing popularity. The main advantages of producing medical isotopes with accelerators are carrier free radionuclides of short lived isotopes, improved handling, reduction of the radioactive waste, and lower cost of isotope fabrication. Proton-rich isotopes are the result of nuclear interactions between enriched stable isotopes and energetic protons. An interesting observation is that during the production of proton-rich isotopes, fast and intermediately fast neutrons from nuclear reactions such as (p,xn) are also produced as a by-product in the nuclear reactions. This observation suggests that it is perhaps possible to use these neutrons to activate secondary targets for the production of neutron-rich isotopes. The study of secondary radioisotope production with fast neutrons from (p,xn) reactions using a particle accelerator is the main goal of the research in this thesis.

**Contributing Partner:**UNT Libraries

**Permallink:**digital.library.unt.edu/ark:/67531/metadc3077/

### Complexity as Aging Non-Poisson Renewal Processes

**Date:**May 2007

**Creator:**Bianco, Simone

**Description:**The search for a satisfactory model for complexity, meant as an intermediate condition between total order and total disorder, is still subject of debate in the scientific community. In this dissertation the emergence of non-Poisson renewal processes in several complex systems is investigated. After reviewing the basics of renewal theory, another popular approach to complexity, called modulation, is introduced. I show how these two different approaches, given a suitable choice of the parameter involved, can generate the same macroscopic outcome, namely an inverse power law distribution density of events occurrence. To solve this ambiguity, a numerical instrument, based on the theoretical analysis of the aging properties of renewal systems, is introduced. The application of this method, called renewal aging experiment, allows us to distinguish if a time series has been generated by a renewal or a modulation process. This method of analysis is then applied to several physical systems, from blinking quantum dots, to the human brain activity, to seismic fluctuations. Theoretical conclusions about the underlying nature of the considered complex systems are drawn.

**Contributing Partner:**UNT Libraries

**Permallink:**digital.library.unt.edu/ark:/67531/metadc3706/

### Fractional Brownian motion and dynamic approach to complexity.

**Date:**August 2007

**Creator:**Cakir, Rasit

**Description:**The dynamic approach to fractional Brownian motion (FBM) establishes a link between non-Poisson renewal process with abrupt jumps resetting to zero the system's memory and correlated dynamic processes, whose individual trajectories keep a non-vanishing memory of their past time evolution. It is well known that the recrossing times of the origin by an ordinary 1D diffusion trajectory generates a distribution of time distances between two consecutive origin recrossing times with an inverse power law with index m=1.5. However, with theoretical and numerical arguments, it is proved that this is the special case of a more general condition, insofar as the recrossing times produced by the dynamic FBM generates process with m=2-H. Later, the model of ballistic deposition is studied, which is as a simple way to establish cooperation among the columns of a growing surface, to show that cooperation generates memory properties and, at same time, non-Poisson renewal events. Finally, the connection between trajectory and density memory is discussed, showing that the trajectory memory does not necessarily yields density memory, and density memory might be compatible with the existence of abrupt jumps resetting to zero the system's memory.

**Contributing Partner:**UNT Libraries

**Permallink:**digital.library.unt.edu/ark:/67531/metadc3992/

### Studying Interactions of Gas Molecules with Nanomaterials Loaded in a Microwave Resonant Cavity

**Date:**August 2007

**Creator:**Anand, Aman

**Description:**A resonant cavity operating in TE011 mode was used to study the adsorption response of single walled carbon nanotubes (SWCNTs) and other nanomaterials for different types of gas molecules. The range of the frequency signal as a probe was chosen as geometry dependent range between 9.1 -9.8 GHz. A highly specific range can be studied for further experiments dependent on the type of molecule being investigated. It was found that for different pressures of gases and for different types of nanomaterials, there was a different response in the shifts of the probe signal for each cycle of gassing and degassing of the cavity. This dissertation suggests that microwave spectroscopy of a complex medium of gases and carbon nanotubes can be used as a highly sensitive technique to determine the complex dielectric response of different polar as well as non-polar gases when subjected to intense electromagnetic fields within the cavity. Also, as part of the experimental work, a range of other micro-porous materials was tested using the residual gas analysis (RGA) technique to determine their intrinsic absorption/adsorption characteristics when under an ultra-high vacuum environment. The scientific results obtained from this investigation, led to the development of a chemical biological sensor prototype. ...

**Contributing Partner:**UNT Libraries

**Permallink:**digital.library.unt.edu/ark:/67531/metadc4009/

### The Dynamic Foundation of Fractal Operators.

**Date:**May 2003

**Creator:**Bologna, Mauro

**Description:**The fractal operators discussed in this dissertation are introduced in the form originally proposed in an earlier book of the candidate, which proves to be very convenient for physicists, due to its heuristic and intuitive nature. This dissertation proves that these fractal operators are the most convenient tools to address a number of problems in condensed matter, in accordance with the point of view of many other authors, and with the earlier book of the candidate. The microscopic foundation of the fractal calculus on the basis of either classical or quantum mechanics is still unknown, and the second part of this dissertation aims at this important task. This dissertation proves that the adoption of a master equation approach, and so of probabilistic as well as dynamical argument yields a satisfactory solution of the problem, as shown in a work by the candidate already published. At the same time, this dissertation shows that the foundation of Levy statistics is compatible with ordinary statistical mechanics and thermodynamics. The problem of the connection with the Kolmogorov-Sinai entropy is a delicate problem that, however, can be successfully solved. The derivation from a microscopic Liouville-like approach based on densities, however, is shown to be impossible. ...

**Contributing Partner:**UNT Libraries

**Permallink:**digital.library.unt.edu/ark:/67531/metadc4235/

### Complexity as a Form of Transition From Dynamics to Thermodynamics: Application to Sociological and Biological Processes.

**Date:**May 2003

**Creator:**Ignaccolo, Massimiliano

**Description:**This dissertation addresses the delicate problem of establishing the statistical mechanical foundation of complex processes. These processes are characterized by a delicate balance of randomness and order, and a correct paradigm for them seems to be the concept of sporadic randomness. First of all, we have studied if it is possible to establish a foundation of these processes on the basis of a generalized version of thermodynamics, of non-extensive nature. A detailed account of this attempt is reported in Ignaccolo and Grigolini (2001), which shows that this approach leads to inconsistencies. It is shown that there is no need to generalize the Kolmogorov-Sinai entropy by means of a non-extensive indicator, and that the anomaly of these processes does not rest on their non-extensive nature, but rather in the fact that the process of transition from dynamics to thermodynamics, this being still extensive, occurs in an exceptionally extended time scale. Even, when the invariant distribution exists, the time necessary to reach the thermodynamic scaling regime is infinite. In the case where no invariant distribution exists, the complex system lives forever in a condition intermediate between dynamics and thermodynamics. This discovery has made it possible to create a new method of analysis ...

**Contributing Partner:**UNT Libraries

**Permallink:**digital.library.unt.edu/ark:/67531/metadc4209/

### A Dynamic and Thermodynamic Approach to Complexity.

**Date:**August 2003

**Creator:**Yang, Jin

**Description:**The problem of establishing the correct approach to complexity is a very hot and crucial issue to which this dissertation gives some contributions. This dissertation considers two main possibilities, one, advocated by Tsallis and co-workers, setting the foundation of complexity on a generalized, non-extensive , form of thermodynamics, and another, proposed by the UNT Center for Nonlinear Science, on complexity as a new condition that, for physical systems, would be equivalent to a state of matter intermediate between dynamics and thermodynamics. In the first part of this dissertation, the concept of Kolmogorov-Sinai entropy is introduced. The Pesin theorem is generalized in the formalism of Tsallis non-extensive thermodynamics. This generalized form of Pesin theorem is used in the study of two major classes of problems, whose prototypes are given by the Manneville and the logistic map respectively. The results of these studies convince us that the approach to complexity must be made along lines different from those of the non-extensive thermodynamics. We have been convinced that the Lévy walk can be used as a prototype model of complexity, as a condition of balance between order and randomness that yields new phenomena such as aging, and multifractality. We reach the conclusions that ...

**Contributing Partner:**UNT Libraries

**Permallink:**digital.library.unt.edu/ark:/67531/metadc4276/

### Polymer Gels: Kinetics, Dynamics Studies and Their Applications as Biomaterials

**Date:**December 2003

**Creator:**Wang, Changjie

**Description:**The polymer gels especially hydrogels have a very special structure and useful features such as unusual volume phase transition, compatibility with biological systems, and sensitivity to environmental stimuli (temperature, pH value, electric field, light and more), which lead to many potential applications in physical and biochemical fields. This research includes: (1) the theoretical and experimental studies of polymer gels on swelling kinetics, spinodal decomposition, and solution convection in gel matrix; (2) applications of polymer gels in wound dressing, tissue-simulating optical phantom and gel display. The kinetics of gel swelling has been theoretically analyzed by considering coupled motions of both solvent and polymer network. Analytical solutions of the solvent and the network movement are derived from collective diffusion equations for a long cylindrical and a large disk gel. Kinetics of spinodal decomposition of N-isopropylacrylamide (NIPA) polymer gel is investigated using turbidity and ultrasonic techniques. By probing movement of domains, a possible time-dependent gel structure in the spinodal decomposition region is presented. Theoretical studies of solution convection in gel matrix have been done and more analysis on dimensionless parameters is provided. To enhance the drug uptake and release capacity of silicone rubber (SR), NIPA hydrogel particles have been incorporated into a SR ...

**Contributing Partner:**UNT Libraries

**Permallink:**digital.library.unt.edu/ark:/67531/metadc4379/

### The Concept of Collision Strength and Its Applications

**Date:**May 2004

**Creator:**Chang, Yongbin

**Description:**Collision strength, the measure of strength for a binary collision, hasn't been defined clearly. In practice, many physical arguments have been employed for the purpose and taken for granted. A scattering angle has been widely and intensively used as a measure of collision strength in plasma physics for years. The result of this is complication and unnecessary approximation in deriving some of the basic kinetic equations and in calculating some of the basic physical terms. The Boltzmann equation has a five-fold integral collision term that is complicated. Chandrasekhar and Spitzer's approaches to the linear Fokker-Planck coefficients have several approximations. An effective variable-change technique has been developed in this dissertation as an alternative to scattering angle as the measure of collision strength. By introducing the square of the reduced impulse or its equivalencies as a collision strength variable, many plasma calculations have been simplified. The five-fold linear Boltzmann collision integral and linearized Boltzmann collision integral are simplified to three-fold integrals. The arbitrary order linear Fokker-Planck coefficients are calculated and expressed in a uniform expression. The new theory provides a simple and exact method for describing the equilibrium plasma collision rate, and a precise calculation of the equilibrium relaxation time. It generalizes ...

**Contributing Partner:**UNT Libraries

**Permallink:**digital.library.unt.edu/ark:/67531/metadc4530/

### Random growth of interfaces: Statistical analysis of single columns and detection of critical events.

**Access:**Use of this item is restricted to the UNT Community.

**Date:**August 2004

**Creator:**Failla, Roberto

**Description:**The dynamics of growth and formation of surfaces and interfaces is becoming very important for the understanding of the origin and the behavior of a wide range of natural and industrial dynamical processes. The first part of the paper is focused on the interesting field of the random growth of surfaces and interfaces, which finds application in physics, geology, biology, economics, and engineering among others. In this part it is studied the random growth of surfaces from within the perspective of a single column, namely, the fluctuation of the column height around the mean value, which is depicted as being subordinated to a standard fluctuation-dissipation process with friction g. It is argued that the main properties of Kardar-Parisi-Zhang theory are derived by identifying the distribution of return times to y(0) = 0, which is a truncated inverse power law, with the distribution of subordination times. The agreement of the theoretical prediction with the numerical treatment of the model of ballistic deposition is remarkably good, in spite of the finite size effects affecting this model. The second part of the paper deals with the efficiency of the diffusion entropy analysis (DEA) when applied to the studies of stromatolites. In this case ...

**Contributing Partner:**UNT Libraries

**Permallink:**digital.library.unt.edu/ark:/67531/metadc4550/

### Non-Poissonian statistics, aging and "blinking'" quantum dots.

**Date:**August 2004

**Creator:**Aquino, Gerardo

**Description:**This dissertation addresses the delicate problem of aging in complex systems characterized by non-Poissonian statistics. With reference to a generic two-states system interacting with a bath it is shown that to properly describe the evolution of such a system within the formalism of the continuous time random walk (CTRW), it has to be taken into account that, if the system is prepared at time t=0 and the observation of the system starts at a later time ta>0, the distribution of the first sojourn times in each of the two states depends on ta, the age of the system. It is shown that this aging property in the fractional derivative formalism forces to introduce a fractional index depending on time. It is shown also that, when a stationary condition exists, the Onsager regression principle is fulfilled only if the system is aged and consequently if an infinitely aged distribution for the first sojourn times is adopted in the CTRW formalism used to describe the system itself. This dissertation, as final result, shows how to extend to the non-Poisson case the Kubo Anderson (KA) lineshape theory, so as to turn it into a theoretical tool adequate to describe the time evolution of ...

**Contributing Partner:**UNT Libraries

**Permallink:**digital.library.unt.edu/ark:/67531/metadc4555/