## You limited your search to:

**Partner:**UNT Libraries

**Degree Discipline:**Mathematics

**Collection:**UNT Theses and Dissertations

### The Analytical Development of the Trigonometric Functions

**Date:**1951

**Creator:**Mackey, Pearl Cherrington

**Description:**This thesis is a study of the analytical development of the trigonometric functions.

**Contributing Partner:**UNT Libraries

**Permallink:**digital.library.unt.edu/ark:/67531/metadc97030/

### Applications in Fixed Point Theory

**Date:**December 2005

**Creator:**Farmer, Matthew Ray

**Description:**Banach's contraction principle is probably one of the most important theorems in fixed point theory. It has been used to develop much of the rest of fixed point theory. Another key result in the field is a theorem due to Browder, Göhde, and Kirk involving Hilbert spaces and nonexpansive mappings. Several applications of Banach's contraction principle are made. Some of these applications involve obtaining new metrics on a space, forcing a continuous map to have a fixed point, and using conditions on the boundary of a closed ball in a Banach space to obtain a fixed point. Finally, a development of the theorem due to Browder et al. is given with Hilbert spaces replaced by uniformly convex Banach spaces.

**Contributing Partner:**UNT Libraries

**Permallink:**digital.library.unt.edu/ark:/67531/metadc4971/

### Applications of Graph Theory and Topology to Combinatorial Designs

**Date:**December 1988

**Creator:**Somporn Sutinuntopas

**Description:**This dissertation is concerned with the existence and the isomorphism of designs. The first part studies the existence of designs. Chapter I shows how to obtain a design from a difference family. Chapters II to IV study the existence of an affine 3-(p^m,4,λ) design where the v-set is the Galois field GF(p^m). Associated to each prime p, this paper constructs a graph. If the graph has a 1-factor, then a difference family and hence an affine design exists. The question arises of how to determine when the graph has a 1-factor. It is not hard to see that the graph is connected and of even order. Tutte's theorem shows that if the graph is 2-connected and regular of degree three, then the graph has a 1-factor. By using the concept of quadratic reciprocity, this paper shows that if p Ξ 53 or 77 (mod 120), the graph is almost regular of degree three, i.e., every vertex has degree three, except two vertices each have degree tow. Adding an extra edge joining the two vertices with degree tow gives a regular graph of degree three. Also, Tutte proved that if A is an edge of the graph satisfying the above conditions, ...

**Contributing Partner:**UNT Libraries

**Permallink:**digital.library.unt.edu/ark:/67531/metadc331968/

### Applications of Rapidly Mixing Markov Chains to Problems in Graph Theory

**Date:**August 1993

**Creator:**Simmons, Dayton C. (Dayton Cooper)

**Description:**In this dissertation the results of Jerrum and Sinclair on the conductance of Markov chains are used to prove that almost all generalized Steinhaus graphs are rapidly mixing and an algorithm for the uniform generation of 2 - (4k + 1,4,1) cyclic Mendelsohn designs is developed.

**Contributing Partner:**UNT Libraries

**Permallink:**digital.library.unt.edu/ark:/67531/metadc277740/

### An Approximate Solution to the Dirichlet Problem

**Date:**August 1964

**Creator:**Redwine, Edward William

**Description:**In the category of mathematics called partial differential equations there is a particular type of problem called the Dirichlet problem. Proof is given in many partial differential equation books that every Dirichlet problem has one and only one solution. The explicit solution is very often not easily determined, so that a method for approximating the solution at certain points becomes desirable. The purpose of this paper is to present and investigate one such method.

**Contributing Partner:**UNT Libraries

**Permallink:**digital.library.unt.edu/ark:/67531/metadc130550/

### Around the Fibonacci Numeration System

**Date:**May 2007

**Creator:**Edson, Marcia Ruth

**Description:**Let 1, 2, 3, 5, 8, … denote the Fibonacci sequence beginning with 1 and 2, and then setting each subsequent number to the sum of the two previous ones. Every positive integer n can be expressed as a sum of distinct Fibonacci numbers in one or more ways. Setting R(n) to be the number of ways n can be written as a sum of distinct Fibonacci numbers, we exhibit certain regularity properties of R(n), one of which is connected to the Euler φ-function. In addition, using a theorem of Fine and Wilf, we give a formula for R(n) in terms of binomial coefficients modulo two.

**Contributing Partner:**UNT Libraries

**Permallink:**digital.library.unt.edu/ark:/67531/metadc3676/

### Aspects of Universality in Function Iteration

**Date:**December 1991

**Creator:**Taylor, John (John Allen)

**Description:**This work deals with some aspects of universal topological and metric dynamic behavior of iterated maps of the interval.

**Contributing Partner:**UNT Libraries

**Permallink:**digital.library.unt.edu/ark:/67531/metadc278799/

### Atmospheric Gusts and Their Effect on Aircraft

**Date:**August 1958

**Creator:**Walling, Waunnetta Keene

**Description:**This thesis investigates atmospheric gusts and their effect on aircraft.

**Contributing Partner:**UNT Libraries

**Permallink:**digital.library.unt.edu/ark:/67531/metadc108016/

### Automorphism Groups

**Date:**August 1965

**Creator:**Edwards, Donald Eugene

**Description:**This paper will be concerned mainly with automorphisms of groups. The concept of a group endomorphism will be used at various points in this paper.

**Contributing Partner:**UNT Libraries

**Permallink:**digital.library.unt.edu/ark:/67531/metadc130613/

### Automorphism Groups of Strong Bruhat Orders of Coxeter Groups

**Date:**August 1986

**Creator:**Sutherland, David C. (David Craig)

**Description:**In this dissertation, we describe the automorphism groups for the strong Bruhat orders A_n-1, B_n, and D_n. In particular, the automorphism group of A_n-1 for n ≥ 3 is isomorphic to the dihedral group of order eight, D_4; the automorphism group of B_n for n ≥ 3 is isomorphic to C_2 x C_2 where C_2 is the cyclic group of order two; the automorphism group of D_n for n > 5 and n even is isomorphic to C_2 x C_2 x C_2; and the automorphism group of D_n for n ≥ 5 and n odd is isomorphic to the dihedral group D_4.

**Contributing Partner:**UNT Libraries

**Permallink:**digital.library.unt.edu/ark:/67531/metadc330906/