## You limited your search to:

**Partner:**UNT Libraries

**Degree Discipline:**Mathematics

**Collection:**UNT Theses and Dissertations

### Irreducible Modules for Yokonuma-Type Hecke Algebras

**Date:**August 2016

**Creator:**Dave, Ojas

**Description:**Yokonuma-type Hecke algebras are a class of Hecke algebras built from a Type A construction. In this thesis, I construct the irreducible representations for a class of generic Yokonuma-type Hecke algebras which specialize to group algebras of the complex reflection groups and to endomorphism rings of certain permutation characters of finite general linear groups.

**Contributing Partner:**UNT Libraries

**Permallink:**digital.library.unt.edu/ark:/67531/metadc862800/

### Quantum Drinfeld Hecke Algebras

**Date:**August 2016

**Creator:**Uhl, Christine

**Description:**Quantum Drinfeld Hecke algebras extend both Lusztig's graded Hecke algebras and the symplectic reflection algebras of Etingof and Ginzburg to the quantum setting. A quantum (or skew) polynomial ring is generated by variables which commute only up to a set of quantum parameters. Certain finite groups may act by graded automorphisms on a quantum polynomial ring and quantum Drinfeld Hecke algebras deform the natural semi-direct product. We classify these algebras for the infinite family of complex reflection groups acting in arbitrary dimension. We also classify quantum Drinfeld Hecke algebras in arbitrary dimension for the infinite family of mystic reflection groups of Kirkman, Kuzmanovich, and Zhang, who showed they satisfy a Shephard-Todd-Chevalley theorem in the quantum setting. Using a classification of automorphisms of quantum polynomial rings in low dimension, we develop tools for studying quantum Drinfeld Hecke algebras in 3 dimensions. We describe the parameter space of such algebras using special properties of the quantum determinant in low dimension; although the quantum determinant is not a homomorphism in general, it is a homomorphism on the finite linear groups acting in dimension 3.

**Contributing Partner:**UNT Libraries

**Permallink:**digital.library.unt.edu/ark:/67531/metadc862764/

### Continuous Combinatorics of a Lattice Graph in the Cantor Space

**Date:**May 2016

**Creator:**Krohne, Edward William

**Description:**We present a novel theorem of Borel Combinatorics that sheds light on the types of continuous functions that can be defined on the Cantor space. We specifically consider the part X=F(2ᴳ) from the Cantor space, where the group G is the additive group of integer pairs ℤ². That is, X is the set of aperiodic {0,1} labelings of the two-dimensional infinite lattice graph. We give X the Bernoulli shift action, and this action induces a graph on X in which each connected component is again a two-dimensional lattice graph. It is folklore that no continuous (indeed, Borel) function provides a two-coloring of the graph on X, despite the fact that any finite subgraph of X is bipartite. Our main result offers a much more complete analysis of continuous functions on this space. We construct a countable collection of finite graphs, each consisting of twelve "tiles", such that for any property P (such as "two-coloring") that is locally recognizable in the proper sense, a continuous function with property P exists on X if and only if a function with a corresponding property P' exists on one of the graphs in the collection. We present the theorem, and give several applications.

**Contributing Partner:**UNT Libraries

**Permallink:**digital.library.unt.edu/ark:/67531/metadc849680/

### An Exploration of the Word2vec Algorithm: Creating a Vector Representation of a Language Vocabulary that Encodes Meaning and Usage Patterns in the Vector Space Structure

**Date:**May 2016

**Creator:**Le, Thu Anh

**Description:**This thesis is an exloration and exposition of a highly efficient shallow neural network algorithm called word2vec, which was developed by T. Mikolov et al. in order to create vector representations of a language vocabulary such that information about the meaning and usage of the vocabulary words is encoded in the vector space structure. Chapter 1 introduces natural language processing, vector representations of language vocabularies, and the word2vec algorithm. Chapter 2 reviews the basic mathematical theory of deterministic convex optimization. Chapter 3 provides background on some concepts from computer science that are used in the word2vec algorithm: Huffman trees, neural networks, and binary cross-entropy. Chapter 4 provides a detailed discussion of the word2vec algorithm itself and includes a discussion of continuous bag of words, skip-gram, hierarchical softmax, and negative sampling. Finally, Chapter 5 explores some applications of vector representations: word categorization, analogy completion, and language translation assistance.

**Contributing Partner:**UNT Libraries

**Permallink:**digital.library.unt.edu/ark:/67531/metadc849728/

### The Relative Complexity of Various Classification Problems among Compact Metric Spaces

**Date:**May 2016

**Creator:**Chang, Cheng

**Description:**In this thesis, we discuss three main projects which are related to Polish groups and their actions on standard Borel spaces. In the first part, we show that the complexity of the classification problem of continua is Borel bireducible to a universal orbit equivalence relation induce by a Polish group on a standard Borel space. In the second part, we compare the relative complexity of various types of classification problems concerning subspaces of [0,1]^n for all natural number n. In the last chapter, we give a topological characterization theorem for the class of locally compact two-sided invariant non-Archimedean Polish groups. Using this theorem, we show the non-existence of a universal group and the existence of a surjectively universal group in the class.

**Contributing Partner:**UNT Libraries

**Permallink:**digital.library.unt.edu/ark:/67531/metadc849626/

### Optimal Strategies for Stopping Near the Top of a Sequence

**Date:**December 2015

**Creator:**Islas Anguiano, Jose Angel

**Description:**In Chapter 1 the classical secretary problem is introduced. Chapters 2 and 3 are variations of this problem. Chapter 2, discusses the problem of maximizing the probability of stopping with one of the two highest values in a Bernoulli random walk with arbitrary parameter p and finite time horizon n. The optimal strategy (continue or stop) depends on a sequence of threshold values (critical probabilities) which has an oscillating pattern. Several properties of this sequence have been proved by Dr. Allaart. Further properties have been recently proved. In Chapter 3, a gambler will observe a finite sequence of continuous random variables. After he observes a value he must decide to stop or continue taking observations. He can play two different games A) Win at the maximum or B) Win within a proportion of the maximum. In the first section the sequence to be observed is independent. It is shown that for each n>1, theoptimal win probability in game A is bounded below by (1-1/n)^{n-1}. It is accomplished by reducing the problem to that of choosing the maximum of a special sequence of two-valued random variables and applying the sum-the-odds theorem of Bruss (2000). Secondly, it is assumed the sequence is ...

**Contributing Partner:**UNT Libraries

**Permallink:**digital.library.unt.edu/ark:/67531/metadc822812/

### Contributions to Descriptive Set Theory

**Date:**August 2015

**Creator:**Atmai, Rachid

**Description:**In this dissertation we study closure properties of pointclasses, scales on sets of reals and the models L[T2n], which are very natural canonical inner models of ZFC. We first characterize projective-like hierarchies by their associated ordinals. This solves a conjecture of Steel and a conjecture of Kechris, Solovay, and Steel. The solution to the first conjecture allows us in particular to reprove a strong partition property result on the ordinal of a Steel pointclass and derive a new boundedness principle which could be useful in the study of the cardinal structure of L(R). We then develop new methods which produce lightface scales on certain sets of reals. The methods are inspired by Jackson’s proof of the Kechris-Martin theorem. We then generalize the Kechris-Martin Theorem to all the Π12n+1 pointclasses using Jackson’s theory of descriptions. This in turns allows us to characterize the sets of reals of a certain initial segment of the models L[T2n]. We then use this characterization and the generalization of Kechris-Martin theorem to show that the L[T2n] are unique. This generalizes previous work of Hjorth. We then characterize the L[T2n] in term of inner models theory, showing that they actually are constructible models over direct limit of ...

**Contributing Partner:**UNT Libraries

**Permallink:**digital.library.unt.edu/ark:/67531/metadc804953/

### Reduced Ideals and Periodic Sequences in Pure Cubic Fields

**Date:**August 2015

**Creator:**Jacobs, G. Tony

**Description:**The “infrastructure” of quadratic fields is a body of theory developed by Dan Shanks, Richard Mollin and others, in which they relate “reduced ideals” in the rings and sub-rings of integers in quadratic fields with periodicity in continued fraction expansions of quadratic numbers. In this thesis, we develop cubic analogs for several infrastructure theorems. We work in the field K=Q(), where 3=m for some square-free integer m, not congruent to ±1, modulo 9. First, we generalize the definition of a reduced ideal so that it applies to K, or to any number field. Then we show that K has only finitely many reduced ideals, and provide an algorithm for listing them. Next, we define a sequence based on the number alpha that is periodic and corresponds to the finite set of reduced principal ideals in K. Using this rudimentary infrastructure, we are able to establish results about fundamental units and reduced ideals for some classes of pure cubic fields. We also introduce an application to Diophantine approximation, in which we present a 2-dimensional analog of the Lagrange value of a badly approximable number, and calculate some examples.

**Contributing Partner:**UNT Libraries

**Permallink:**digital.library.unt.edu/ark:/67531/metadc804842/

### Restricting Invariants and Arrangements of Finite Complex Reflection Groups

**Date:**August 2015

**Creator:**Berardinelli, Angela

**Description:**Suppose that G is a finite, unitary reflection group acting on a complex vector space V and X is a subspace of V. Define N to be the setwise stabilizer of X in G, Z to be the pointwise stabilizer, and C=N/Z. Then restriction defines a homomorphism from the algebra of G-invariant polynomial functions on V to the algebra of C-invariant functions on X. In my thesis, I extend earlier work by Douglass and Röhrle for Coxeter groups to the case where G is a complex reflection group of type G(r,p,n) in the notation of Shephard and Todd and X is in the lattice of the reflection arrangement of G. The main result characterizes when the restriction mapping is surjective in terms of the exponents of G and C and their reflection arrangements.

**Contributing Partner:**UNT Libraries

**Permallink:**digital.library.unt.edu/ark:/67531/metadc804919/

### Trees and Ordinal Indices in C(k) Spaces for K Countable Compact

**Date:**August 2015

**Creator:**Dahal, Koshal Raj

**Description:**In the dissertation we study the C(K) spaces focusing on the case when K is countable compact and more specifically, the structure of C() spaces for < ω1 via special type of trees that they contain. The dissertation is composed of three major sections. In the first section we give a detailed proof of the theorem of Bessaga and Pelczynski on the isomorphic classification of C() spaces. In due time, we describe the standard bases for C(ω) and prove that the bases are monotone. In the second section we consider the lattice-trees introduced by Bourgain, Rosenthal and Schechtman in C() spaces, and define rerooting and restriction of trees. The last section is devoted to the main results. We give some lower estimates of the ordinal-indices in C(ω). We prove that if the tree in C(ω) has large order with small constant then each function in the root must have infinitely many big coordinates. Along the way we deduce some upper estimates for c0 and C(ω), and give a simple proof of Cambern's result that the Banach-Mazur distance between c0 and c = C(ω) is equal to 3.

**Contributing Partner:**UNT Libraries

**Permallink:**digital.library.unt.edu/ark:/67531/metadc804883/

### Condition-dependent Hilbert Spaces for Steepest Descent and Application to the Tricomi Equation

**Date:**August 2014

**Creator:**Montgomery, Jason W.

**Description:**A steepest descent method is constructed for the general setting of a linear differential equation paired with uniqueness-inducing conditions which might yield a generally overdetermined system. The method differs from traditional steepest descent methods by considering the conditions when defining the corresponding Sobolev space. The descent method converges to the unique solution to the differential equation so that change in condition values is minimal. The system has a solution if and only if the first iteration of steepest descent satisfies the system. The finite analogue of the descent method is applied to example problems involving finite difference equations. The well-posed problems include a singular ordinary differential equation and Laplace’s equation, each paired with respective Dirichlet-type conditions. The overdetermined problems include a first-order nonsingular ordinary differential equation with Dirichlet-type conditions and the wave equation with both Dirichlet and Neumann conditions. The method is applied in an investigation of the Tricomi equation, a long-studied equation which acts as a prototype of mixed partial differential equations and has application in transonic flow. The Tricomi equation has been studied for at least ninety years, yet necessary and sufficient conditions for existence and uniqueness of solutions on an arbitrary mixed domain remain unknown. The domains ...

**Contributing Partner:**UNT Libraries

**Permallink:**digital.library.unt.edu/ark:/67531/metadc699977/

### Hermitian Jacobi Forms and Congruences

**Date:**August 2014

**Creator:**Senadheera, Jayantha

**Description:**In this thesis, we introduce a new space of Hermitian Jacobi forms, and we determine its structure. As an application, we study heat cycles of Hermitian Jacobi forms, and we establish a criterion for the existence of U(p) congruences of Hermitian Jacobi forms. We demonstrate that criterion with some explicit examples. Finally, in the appendix we give tables of Fourier series coefficients of several Hermitian Jacobi forms.

**Contributing Partner:**UNT Libraries

**Permallink:**digital.library.unt.edu/ark:/67531/metadc700083/

### Fundamental Issues in Support Vector Machines

**Date:**May 2014

**Creator:**McWhorter, Samuel P.

**Description:**This dissertation considers certain issues in support vector machines (SVMs), including a description of their construction, aspects of certain exponential kernels used in some SVMs, and a presentation of an algorithm that computes the necessary elements of their operation with proof of convergence. In its first section, this dissertation provides a reasonably complete description of SVMs and their theoretical basis, along with a few motivating examples and counterexamples. This section may be used as an accessible, stand-alone introduction to the subject of SVMs for the advanced undergraduate. Its second section provides a proof of the positive-definiteness of a certain useful function here called E and dened as follows: Let V be a complex inner product space. Let N be a function that maps a vector from V to its norm. Let p be a real number between 0 and 2 inclusive and for any in V , let ( be N() raised to the p-th power. Finally, let a be a positive real number. Then E() is exp(()). Although the result is not new (other proofs are known but involve deep properties of stochastic processes) this proof is accessible to advanced undergraduates with a decent grasp of linear algebra. Its ...

**Contributing Partner:**UNT Libraries

**Permallink:**digital.library.unt.edu/ark:/67531/metadc500155/

### Maximum Likelihood Estimation of Logistic Sinusoidal Regression Models

**Date:**December 2013

**Creator:**Weng, Yu

**Description:**We consider the problem of maximum likelihood estimation of logistic sinusoidal regression models and develop some asymptotic theory including the consistency and joint rates of convergence for the maximum likelihood estimators. The key techniques build upon a synthesis of the results of Walker and Song and Li for the widely studied sinusoidal regression model and on making a connection to a result of Radchenko. Monte Carlo simulations are also presented to demonstrate the finite-sample performance of the estimators

**Contributing Partner:**UNT Libraries

**Permallink:**digital.library.unt.edu/ark:/67531/metadc407796/

### Centers of Invariant Differential Operator Algebras for Jacobi Groups of Higher Rank

**Date:**August 2013

**Creator:**Dahal, Rabin

**Description:**Let G be a Lie group acting on a homogeneous space G/K. The center of the universal enveloping algebra of the Lie algebra of G maps homomorphically into the center of the algebra of differential operators on G/K invariant under the action of G. In the case that G is a Jacobi Lie group of rank 2, we prove that this homomorphism is surjective and hence that the center of the invariant differential operator algebra is the image of the center of the universal enveloping algebra. This is an extension of work of Bringmann, Conley, and Richter in the rank 1case.

**Contributing Partner:**UNT Libraries

**Permallink:**digital.library.unt.edu/ark:/67531/metadc283833/

### A Comparative Study of Non Linear Conjugate Gradient Methods

**Date:**August 2013

**Creator:**Pathak, Subrat

**Description:**We study the development of nonlinear conjugate gradient methods, Fletcher Reeves (FR) and Polak Ribiere (PR). FR extends the linear conjugate gradient method to nonlinear functions by incorporating two changes, for the step length αk a line search is performed and replacing the residual, rk (rk=b-Axk) by the gradient of the nonlinear objective function. The PR method is equivalent to FR method for exact line searches and when the underlying quadratic function is strongly convex. The PR method is basically a variant of FR and primarily differs from it in the choice of the parameter βk. On applying the nonlinear Rosenbrock function to the MATLAB code for the FR and the PR algorithms we observe that the performance of PR method (k=29) is far better than the FR method (k=42). But, we observe that when the MATLAB codes are applied to general nonlinear functions, specifically functions whose minimum is a large negative number not close to zero and the iterates too are large values far off from zero the PR algorithm does not perform well. This problem with the PR method persists even if we run the PR algorithm for more iterations or with an initial guess closer to the ...

**Contributing Partner:**UNT Libraries

**Permallink:**digital.library.unt.edu/ark:/67531/metadc283864/

### Descriptive Set Theory and Measure Theory in Locally Compact and Non-locally Compact Groups

**Date:**May 2013

**Creator:**Cohen, Michael Patrick

**Description:**In this thesis we study descriptive-set-theoretic and measure-theoretic properties of Polish groups, with a thematic emphasis on the contrast between groups which are locally compact and those which are not. The work is divided into three major sections. In the first, working jointly with Robert Kallman, we resolve a conjecture of Gleason regarding the Polish topologization of abstract groups of homeomorphisms. We show that Gleason's conjecture is false, and its conclusion is only true when the hypotheses are considerably strengthened. Along the way we discover a new automatic continuity result for a class of functions which behave like but are distinct from functions of Baire class 1. In the second section we consider the descriptive complexity of those subsets of the permutation group S? which arise naturally from the classical Levy-Steinitz series rearrangement theorem. We show that for any conditionally convergent series of vectors in Euclidean space, the sets of permutations which make the series diverge, and diverge properly, are ?03-complete. In the last section we study the phenomenon of Haar null sets a la Christensen, and the closely related notion of openly Haar null sets. We identify and correct a minor error in the proof of Mycielski that a ...

**Contributing Partner:**UNT Libraries

**Permallink:**digital.library.unt.edu/ark:/67531/metadc271792/

### Determinacy-related Consequences on Limit Superiors

**Date:**May 2013

**Creator:**Walker, Daniel

**Description:**Laczkovich proved from ZF that, given a countable sequence of Borel sets on a perfect Polish space, if the limit superior along every subsequence was uncountable, then there was a particular subsequence whose intersection actually contained a perfect subset. Komjath later expanded the result to hold for analytic sets. In this paper, by adding AD and sometimes V=L(R) to our assumptions, we will extend the result further. This generalization will include the increasing of the length of the sequence to certain uncountable regular cardinals as well as removing any descriptive requirements on the sets.

**Contributing Partner:**UNT Libraries

**Permallink:**digital.library.unt.edu/ark:/67531/metadc271913/

### Graev Metrics and Isometry Groups of Polish Ultrametric Spaces

**Date:**May 2013

**Creator:**Shi, Xiaohui

**Description:**This dissertation presents results about computations of Graev metrics on free groups and characterizes isometry groups of countable noncompact Heine-Borel Polish ultrametric spaces. In Chapter 2, computations of Graev metrics are performed on free groups. One of the related results answers an open question of Van Den Dries and Gao. In Chapter 3, isometry groups of countable noncompact Heine-Borel Polish ultrametric spaces are characterized. The notion of generalized tree is defined and a correspondence between the isomorphism group of a generalized tree and the isometry group of a Heine-Borel Polish ultrametric space is established. The concept of a weak inverse limit is introduced to capture the characterization of isomorphism groups of generalized trees. In Chapter 4, partial results of isometry groups of uncountable compact ultrametric spaces are given. It turns out that every compact ultrametric space has a unique countable orbital decomposition. An orbital space consists of disjoint orbits. An orbit subspace of an orbital space is actually a compact homogeneous ultrametric subspace.

**Contributing Partner:**UNT Libraries

**Permallink:**digital.library.unt.edu/ark:/67531/metadc271898/

### Traveling Wave Solutions of the Porous Medium Equation

**Date:**May 2013

**Creator:**Paudel, Laxmi P.

**Description:**We prove the existence of a one-parameter family of solutions of the porous medium equation, a nonlinear heat equation. In our work, with space dimension 3, the interface is a half line whose end point advances at constant speed. We prove, by using maximum principle, that the solutions are stable under a suitable class of perturbations. We discuss the relevance of our solutions, when restricted to two dimensions, to gravity driven flows of thin films. Here we extend the results of J. Iaia and S. Betelu in the paper "Solutions of the porous medium equation with degenerate interfaces" to a higher dimension.

**Contributing Partner:**UNT Libraries

**Permallink:**digital.library.unt.edu/ark:/67531/metadc271876/

### Nonparametric Estimation of Receiver Operating Characteristic Surfaces Via Bernstein Polynomials

**Access:**Use of this item is restricted to the UNT Community.

**Date:**December 2012

**Creator:**Herath, Dushanthi N.

**Description:**Receiver operating characteristic (ROC) analysis is one of the most widely used methods in evaluating the accuracy of a classification method. It is used in many areas of decision making such as radiology, cardiology, machine learning as well as many other areas of medical sciences. The dissertation proposes a novel nonparametric estimation method of the ROC surface for the three-class classification problem via Bernstein polynomials. The proposed ROC surface estimator is shown to be uniformly consistent for estimating the true ROC surface. In addition, it is shown that the map from which the proposed estimator is constructed is Hadamard differentiable. The proposed ROC surface estimator is also demonstrated to lead to the explicit expression for the estimated volume under the ROC surface . Moreover, the exact mean squared error of the volume estimator is derived and some related results for the mean integrated squared error are also obtained. To assess the performance and accuracy of the proposed ROC and volume estimators, Monte-Carlo simulations are conducted. Finally, the method is applied to the analysis of two real data sets.

**Contributing Partner:**UNT Libraries

**Permallink:**digital.library.unt.edu/ark:/67531/metadc177212/

### Semi-supervised and Self-evolving Learning Algorithms with Application to Anomaly Detection in Cloud Computing

**Date:**December 2012

**Creator:**Pannu, Husanbir Singh

**Description:**Semi-supervised learning (SSL) is the most practical approach for classification among machine learning algorithms. It is similar to the humans way of learning and thus has great applications in text/image classification, bioinformatics, artificial intelligence, robotics etc. Labeled data is hard to obtain in real life experiments and may need human experts with experimental equipments to mark the labels, which can be slow and expensive. But unlabeled data is easily available in terms of web pages, data logs, images, audio, video les and DNA/RNA sequences. SSL uses large unlabeled and few labeled data to build better classifying functions which acquires higher accuracy and needs lesser human efforts. Thus it is of great empirical and theoretical interest. We contribute two SSL algorithms (i) adaptive anomaly detection (AAD) (ii) hybrid anomaly detection (HAD), which are self evolving and very efficient to detect anomalies in a large scale and complex data distributions. Our algorithms are capable of modifying an existing classier by both retiring old data and adding new data. This characteristic enables the proposed algorithms to handle massive and streaming datasets where other existing algorithms fail and run out of memory. As an application to semi-supervised anomaly detection and for experimental illustration, we ...

**Contributing Partner:**UNT Libraries

**Permallink:**digital.library.unt.edu/ark:/67531/metadc177238/

### Equivalence Classes of Subquotients of Pseudodifferential Operator Modules on the Line

**Date:**August 2012

**Creator:**Larsen, Jeannette M.

**Description:**Certain subquotients of Vec(R)-modules of pseudodifferential operators from one tensor density module to another are categorized, giving necessary and sufficient conditions under which two such subquotients are equivalent as Vec(R)-representations. These subquotients split under the projective subalgebra, a copy of ????2, when the members of their composition series have distinct Casimir eigenvalues. Results were obtained using the explicit description of the action of Vec(R) with respect to this splitting. In the length five case, the equivalence classes of the subquotients are determined by two invariants. In an appropriate coordinate system, the level curves of one of these invariants are a pencil of conics, and those of the other are a pencil of cubics.

**Contributing Partner:**UNT Libraries

**Permallink:**digital.library.unt.edu/ark:/67531/metadc149627/

### Hochschild Cohomology and Complex Reflection Groups

**Date:**August 2012

**Creator:**Foster-Greenwood, Briana A.

**Description:**A concrete description of Hochschild cohomology is the first step toward exploring associative deformations of algebras. In this dissertation, deformation theory, geometry, combinatorics, invariant theory, representation theory, and homological algebra merge in an investigation of Hochschild cohomology of skew group algebras arising from complex reflection groups. Given a linear action of a finite group on a finite dimensional vector space, the skew group algebra under consideration is the semi-direct product of the group with a polynomial ring on the vector space. Each representation of a group defines a different skew group algebra, which may have its own interesting deformations. In this work, we explicitly describe all graded Hecke algebras arising as deformations of the skew group algebra of any finite group acting by the regular representation. We then focus on rank two exceptional complex reflection groups acting by any irreducible representation. We consider in-depth the reflection representation and a nonfaithful rotation representation. Alongside our study of cohomology for the rotation representation, we develop techniques valid for arbitrary finite groups acting by a representation with a central kernel. Additionally, we consider combinatorial questions about reflection length and codimension orderings on complex reflection groups. We give algorithms using character theory to compute ...

**Contributing Partner:**UNT Libraries

**Permallink:**digital.library.unt.edu/ark:/67531/metadc149591/