You limited your search to:

  Partner: UNT Libraries
 Decade: 2000-2009
 Degree Discipline: Mathematics
 Collection: UNT Theses and Dissertations
Level Curves of the Angle Function of a Positive Definite Symmetric Matrix

Level Curves of the Angle Function of a Positive Definite Symmetric Matrix

Access: Use of this item is restricted to the UNT Community.
Date: December 2009
Creator: Bajracharya, Neeraj
Description: Given a real N by N matrix A, write p(A) for the maximum angle by which A rotates any unit vector. Suppose that A and B are positive definite symmetric (PDS) N by N matrices. Then their Jordan product {A, B} := AB + BA is also symmetric, but not necessarily positive definite. If p(A) + p(B) is obtuse, then there exists a special orthogonal matrix S such that {A, SBS^(-1)} is indefinite. Of course, if A and B commute, then {A, B} is positive definite. Our work grows from the following question: if A and B are commuting positive definite symmetric matrices such that p(A) + p(B) is obtuse, what is the minimal p(S) such that {A, SBS^(-1)} indefinite? In this dissertation we will describe the level curves of the angle function mapping a unit vector x to the angle between x and Ax for a 3 by 3 PDS matrix A, and discuss their interaction with those of a second such matrix.
Contributing Partner: UNT Libraries
On the density of minimal free subflows of general symbolic flows.

On the density of minimal free subflows of general symbolic flows.

Date: August 2009
Creator: Seward, Brandon Michael
Description: This paper studies symbolic dynamical systems {0, 1}G, where G is a countably infinite group, {0, 1}G has the product topology, and G acts on {0, 1}G by shifts. It is proven that for every countably infinite group G the union of the minimal free subflows of {0, 1}G is dense. In fact, a stronger result is obtained which states that if G is a countably infinite group and U is an open subset of {0, 1}G, then there is a collection of size continuum consisting of pairwise disjoint minimal free subflows intersecting U.
Contributing Partner: UNT Libraries
The Global Structure of Iterated Function Systems

The Global Structure of Iterated Function Systems

Date: May 2009
Creator: Snyder, Jason Edward
Description: I study sets of attractors and non-attractors of finite iterated function systems. I provide examples of compact sets which are attractors of iterated function systems as well as compact sets which are not attractors of any iterated function system. I show that the set of all attractors is a dense Fs set and the space of all non-attractors is a dense Gd set it the space of all non-empty compact subsets of a space X. I also investigate the small trans-finite inductive dimension of the space of all attractors of iterated function systems generated by similarity maps on [0,1].
Contributing Partner: UNT Libraries
A New Algorithm for Finding the Minimum Distance between Two Convex Hulls

A New Algorithm for Finding the Minimum Distance between Two Convex Hulls

Date: May 2009
Creator: Kaown, Dougsoo
Description: The problem of computing the minimum distance between two convex hulls has applications to many areas including robotics, computer graphics and path planning. Moreover, determining the minimum distance between two convex hulls plays a significant role in support vector machines (SVM). In this study, a new algorithm for finding the minimum distance between two convex hulls is proposed and investigated. A convergence of the algorithm is proved and applicability of the algorithm to support vector machines is demostrated. The performance of the new algorithm is compared with the performance of one of the most popular algorithms, the sequential minimal optimization (SMO) method. The new algorithm is simple to understand, easy to implement, and can be more efficient than the SMO method for many SVM problems.
Contributing Partner: UNT Libraries
Urysohn ultrametric spaces and isometry groups.

Urysohn ultrametric spaces and isometry groups.

Date: May 2009
Creator: Shao, Chuang
Description: In this dissertation we study a special sub-collection of Polish metric spaces: complete separable ultrametric spaces. Polish metric spaces have been studied for quite a long while, and a lot of results have been obtained. Motivated by some of earlier research, we work on the following two main parts in this dissertation. In the first part, we show the existence of Urysohn Polish R-ultrametric spaces, for an arbitrary countable set R of non-negative numbers, including 0. Then we give point-by-point construction of a countable R-ultra-Urysohn space. We also obtain a complete characterization for the set R which corresponding to a R-Urysohn metric space. From this characterization we conclude that there exist R-Urysohn spaces for a wide family of countable R. Moreover, we determine the complexity of the classification of all Polish ultrametric spaces. In the second part, we investigate the isometry groups of Polish ultrametric spaces. We prove that isometry group of an Urysohn Polish R-ultrametric space is universal among isometry groups of Polish R-ultrametric spaces. We completely characterize the isometry groups of finite ultrametric spaces and the isometry groups of countable compact ultrametric spaces. Moreover, we give some necessary conditions for finite groups to be isomorphic to some isometry ...
Contributing Partner: UNT Libraries
A Constructive Method for Finding Critical Point of the Ginzburg-Landau Energy Functional

A Constructive Method for Finding Critical Point of the Ginzburg-Landau Energy Functional

Date: August 2008
Creator: Kazemi, Parimah
Description: In this work I present a constructive method for finding critical points of the Ginzburg-Landau energy functional using the method of Sobolev gradients. I give a description of the construction of the Sobolev gradient and obtain convergence results for continuous steepest descent with this gradient. I study the Ginzburg-Landau functional with magnetic field and the Ginzburg-Landau functional without magnetic field. I then present the numerical results I obtained by using steepest descent with the discretized Sobolev gradient.
Contributing Partner: UNT Libraries
Spaces of operators containing co and/or l ∞ with an application of vector measures.

Spaces of operators containing co and/or l ∞ with an application of vector measures.

Date: August 2008
Creator: Schulle, Polly Jane
Description: The Banach spaces L(X, Y), K(X, Y), Lw*(X*, Y), and Kw*(X*, Y) are studied to determine when they contain the classical Banach spaces co or l ∞. The complementation of the Banach space K(X, Y) in L(X, Y) is discussed as well as what impact this complementation has on the embedding of co or l∞ in K(X, Y) or L(X, Y). Results concerning the complementation of the Banach space Kw*(X*, Y) in Lw*(X*, Y) are also explored and how that complementation affects the embedding of co or l ∞ in Kw*(X*, Y) or Lw*(X*, Y). The l p spaces for 1 ≤ p < ∞ are studied to determine when the space of compact operators from one l p space to another contains co. The paper contains a new result which classifies these spaces of operators. Results of Kalton, Feder, and Emmanuele concerning the complementation of K(X, Y) in L(X, Y) are generalized. A new result using vector measures is given to provide more efficient proofs of theorems by Kalton, Feder, Emmanuele, Emmanuele and John, and Bator and Lewis as well as a new proof of the fact that l ∞ is prime.
Contributing Partner: UNT Libraries
Localized Radial Solutions for Nonlinear p-Laplacian Equation in RN

Localized Radial Solutions for Nonlinear p-Laplacian Equation in RN

Date: May 2008
Creator: Pudipeddi, Sridevi
Description: We establish the existence of radial solutions to the p-Laplacian equation ∆p u + f(u)=0 in RN, where f behaves like |u|q-1 u when u is large and f(u) < 0 for small positive u. We show that for each nonnegative integer n, there is a localized solution u which has exactly n zeros. Also, we look for radial solutions of a superlinear Dirichlet problem in a ball. We show that for each nonnegative integer n, there is a solution u which has exactly n zeros. Here we give an alternate proof to that which was given by Castro and Kurepa.
Contributing Partner: UNT Libraries
Uniqueness Results for the Infinite Unitary, Orthogonal and Associated Groups

Uniqueness Results for the Infinite Unitary, Orthogonal and Associated Groups

Date: May 2008
Creator: Atim, Alexandru Gabriel
Description: Let H be a separable infinite dimensional complex Hilbert space, let U(H) be the Polish topological group of unitary operators on H, let G be a Polish topological group and φ:G→U(H) an algebraic isomorphism. Then φ is a topological isomorphism. The same theorem holds for the projective unitary group, for the group of *-automorphisms of L(H) and for the complex isometry group. If H is a separable real Hilbert space with dim(H)≥3, the theorem is also true for the orthogonal group O(H), for the projective orthogonal group and for the real isometry group. The theorem fails for U(H) if H is finite dimensional complex Hilbert space.
Contributing Partner: UNT Libraries
Around the Fibonacci Numeration System

Around the Fibonacci Numeration System

Date: May 2007
Creator: Edson, Marcia Ruth
Description: Let 1, 2, 3, 5, 8, … denote the Fibonacci sequence beginning with 1 and 2, and then setting each subsequent number to the sum of the two previous ones. Every positive integer n can be expressed as a sum of distinct Fibonacci numbers in one or more ways. Setting R(n) to be the number of ways n can be written as a sum of distinct Fibonacci numbers, we exhibit certain regularity properties of R(n), one of which is connected to the Euler φ-function. In addition, using a theorem of Fine and Wilf, we give a formula for R(n) in terms of binomial coefficients modulo two.
Contributing Partner: UNT Libraries
Determining Properties of Synaptic Structure in a Neural Network through Spike Train Analysis

Determining Properties of Synaptic Structure in a Neural Network through Spike Train Analysis

Date: May 2007
Creator: Brooks, Evan
Description: A "complex" system typically has a relatively large number of dynamically interacting components and tends to exhibit emergent behavior that cannot be explained by analyzing each component separately. A biological neural network is one example of such a system. A multi-agent model of such a network is developed to study the relationships between a network's structure and its spike train output. Using this model, inferences are made about the synaptic structure of networks through cluster analysis of spike train summary statistics A complexity measure for the network structure is also presented which has a one-to-one correspondence with the standard time series complexity measure sample entropy.
Contributing Partner: UNT Libraries
Compact Operators and the Schrödinger Equation

Compact Operators and the Schrödinger Equation

Date: December 2006
Creator: Kazemi, Parimah
Description: In this thesis I look at the theory of compact operators in a general Hilbert space, as well as the inverse of the Hamiltonian operator in the specific case of L2[a,b]. I show that this inverse is a compact, positive, and bounded linear operator. Also the eigenfunctions of this operator form a basis for the space of continuous functions as a subspace of L2[a,b]. A numerical method is proposed to solve for these eigenfunctions when the Hamiltonian is considered as an operator on Rn. The paper finishes with a discussion of examples of Schrödinger equations and the solutions.
Contributing Partner: UNT Libraries
A Characterization of Homeomorphic Bernoulli Trial Measures.

A Characterization of Homeomorphic Bernoulli Trial Measures.

Date: August 2006
Creator: Yingst, Andrew Q.
Description: We give conditions which, given two Bernoulli trial measures, determine whether there exists a homeomorphism of Cantor space which sends one measure to the other, answering a question of Oxtoby. We then provide examples, relating these results to the notions of good and refinable measures on Cantor space.
Contributing Partner: UNT Libraries
Characterizations of Continua of Finite Degree

Characterizations of Continua of Finite Degree

Date: August 2006
Creator: Irwin, Shana
Description: In this thesis, some characterizations of continua of finite degree are given. It turns out that being of finite degree (by formal definition) can be described by saying there exists an equivalent metric in which Hausdorff linear measure of the continuum is finite. I discuss this result in detail.
Contributing Partner: UNT Libraries
A Computation of Partial Isomorphism Rank on Ordinal Structures

A Computation of Partial Isomorphism Rank on Ordinal Structures

Date: August 2006
Creator: Bryant, Ross
Description: We compute the partial isomorphism rank, in the sense Scott and Karp, of a pair of ordinal structures using an Ehrenfeucht-Fraisse game. A complete formula is proven by induction given any two arbitrary ordinals written in Cantor normal form.
Contributing Partner: UNT Libraries
Hyperbolic Monge-Ampère Equation

Hyperbolic Monge-Ampère Equation

Access: Use of this item is restricted to the UNT Community.
Date: August 2006
Creator: Howard, Tamani M.
Description: In this paper we use the Sobolev steepest descent method introduced by John W. Neuberger to solve the hyperbolic Monge-Ampère equation. First, we use the discrete Sobolev steepest descent method to find numerical solutions; we use several initial guesses, and explore the effect of some imposed boundary conditions on the solutions. Next, we prove convergence of the continuous Sobolev steepest descent to show local existence of solutions to the hyperbolic Monge-Ampère equation. Finally, we prove some results on the Sobolev gradients that mainly arise from general nonlinear differential equations.
Contributing Partner: UNT Libraries
Dimension spectrum and graph directed Markov systems.

Dimension spectrum and graph directed Markov systems.

Access: Use of this item is restricted to the UNT Community.
Date: May 2006
Creator: Ghenciu, Eugen Andrei
Description: In this dissertation we study graph directed Markov systems (GDMS) and limit sets associated with these systems. Given a GDMS S, by the Hausdorff dimension spectrum of S we mean the set of all positive real numbers which are the Hausdorff dimension of the limit set generated by a subsystem of S. We say that S has full Hausdorff dimension spectrum (full HD spectrum), if the dimension spectrum is the interval [0, h], where h is the Hausdorff dimension of the limit set of S. We give necessary conditions for a finitely primitive conformal GDMS to have full HD spectrum. A GDMS is said to be regular if the Hausdorff dimension of its limit set is also the zero of the topological pressure function. We show that every number in the Hausdorff dimension spectrum is the Hausdorff dimension of a regular subsystem. In the particular case of a conformal iterated function system we show that the Hausdorff dimension spectrum is compact. We introduce several new systems: the nearest integer GDMS, the Gauss-like continued fraction system, and the Renyi-like continued fraction system. We prove that these systems have full HD spectrum. A special attention is given to the backward continued fraction ...
Contributing Partner: UNT Libraries
Generic Algebras and Kazhdan-Lusztig Theory for Monomial Groups

Generic Algebras and Kazhdan-Lusztig Theory for Monomial Groups

Access: Use of this item is restricted to the UNT Community.
Date: May 2006
Creator: Alhaddad, Shemsi I.
Description: The Iwahori-Hecke algebras of Coxeter groups play a central role in the study of representations of semisimple Lie-type groups. An important tool is the combinatorial approach to representations of Iwahori-Hecke algebras introduced by Kazhdan and Lusztig in 1979. In this dissertation, I discuss a generalization of the Iwahori-Hecke algebra of the symmetric group that is instead based on the complex reflection group G(r,1,n). Using the analogues of Kazhdan and Lusztig's R-polynomials, I show that this algebra determines a partial order on G(r,1,n) that generalizes the Chevalley-Bruhat order on the symmetric group. I also consider possible analogues of Kazhdan-Lusztig polynomials.
Contributing Partner: UNT Libraries
Mathematical Modeling of Charged Liquid Droplets: Numerical Simulation and Stability Analysis

Mathematical Modeling of Charged Liquid Droplets: Numerical Simulation and Stability Analysis

Date: May 2006
Creator: Vantzos, Orestis
Description: The goal of this thesis is to study of the evolution of 3D electrically charged liquid droplets of fluid evolving under the influence of surface tension and electrostatic forces. In the first part of the thesis, an appropriate mathematical model of the problem is introduced and the linear stability analysis is developed by perturbing a sphere with spherical harmonics. In the second part, the numerical solution of the problem is described with the use of the boundary elements method (BEM) on an adaptive mesh of triangular elements. The numerical method is validated by comparison with exact solutions. Finally, various numerical results are presented. These include neck formation in droplets, the evolution of surfaces with holes, singularity formation on droplets with various symmetries and numerical evidence that oblate spheroids are unstable.
Contributing Partner: UNT Libraries
Applications in Fixed Point Theory

Applications in Fixed Point Theory

Date: December 2005
Creator: Farmer, Matthew Ray
Description: Banach's contraction principle is probably one of the most important theorems in fixed point theory. It has been used to develop much of the rest of fixed point theory. Another key result in the field is a theorem due to Browder, Göhde, and Kirk involving Hilbert spaces and nonexpansive mappings. Several applications of Banach's contraction principle are made. Some of these applications involve obtaining new metrics on a space, forcing a continuous map to have a fixed point, and using conditions on the boundary of a closed ball in a Banach space to obtain a fixed point. Finally, a development of the theorem due to Browder et al. is given with Hilbert spaces replaced by uniformly convex Banach spaces.
Contributing Partner: UNT Libraries
Dynamics, Thermodynamic formalism and Perturbations of Transcendental Entire Functions of Finite Singular Type

Dynamics, Thermodynamic formalism and Perturbations of Transcendental Entire Functions of Finite Singular Type

Date: May 2005
Creator: Coiculescu, Ion
Description: In this dissertation, we study the dynamics, fractal geometry and the topology of the Julia set of functions in the family H which is a set in the class S, the Speiser class of entire transcendental functions which have only finitely many singular values. One can think of a function from H as a generalized expanding function from the cosh family. We shall build a version of thermodynamic formalism for functions in H and we shall show among others, the existence and uniqueness of a conformal measure. Then we prove a Bowen's type formula, i.e. we show that the Hausdorff dimension of the set of returning points, is the unique zero of the pressure function. We shall also study conjugacies in the family H, perturbation of functions in the family and related dynamical properties. We define Perron-Frobenius operators for some functions naturally associated with functions in the family H and then, using fundamental properties of these operators, we shall prove the important result that the Hausdorff dimension of the subset of returning points depends analytically on the parameter taken from a small open subset of the n-dimensional parameter space.
Contributing Partner: UNT Libraries
Hamiltonian cycles in subset and subspace graphs.

Hamiltonian cycles in subset and subspace graphs.

Access: Use of this item is restricted to the UNT Community.
Date: December 2004
Creator: Ghenciu, Petre Ion
Description: In this dissertation we study the Hamiltonicity and the uniform-Hamiltonicity of subset graphs, subspace graphs, and their associated bipartite graphs. In 1995 paper "The Subset-Subspace Analogy," Kung states the subspace version of a conjecture. The study of this problem led to a more general class of graphs. Inspired by Clark and Ismail's work in the 1996 paper "Binomial and Q-Binomial Coefficient Inequalities Related to the Hamiltonicity of the Kneser Graphs and their Q-Analogues," we defined subset graphs, subspace graphs, and their associated bipartite graphs. The main emphasis of this dissertation is to describe those graphs and study their Hamiltonicity. The results on subset graphs are presented in Chapter 3, on subset bipartite graphs in Chapter 4, and on subspace graphs and subspace bipartite graphs in Chapter 5. We conclude the dissertation by suggesting some generalizations of our results concerning the panciclicity of the graphs.
Contributing Partner: UNT Libraries
Lyapunov Exponents, Entropy and Dimension

Lyapunov Exponents, Entropy and Dimension

Date: August 2004
Creator: Williams, Jeremy M.
Description: We consider diffeomorphisms of a compact Riemann Surface. A development of Oseledec's Multiplicative Ergodic Theorem is given, along with a development of measure theoretic entropy and dimension. The main result, due to L.S. Young, is that for certain diffeomorphisms of a surface, there is a beautiful relationship between these three concepts; namely that the entropy equals dimension times expansion.
Contributing Partner: UNT Libraries
Thermodynamical Formalism

Thermodynamical Formalism

Date: August 2004
Creator: Chousionis, Vasileios
Description: Thermodynamical formalism is a relatively recent area of pure mathematics owing a lot to some classical notions of thermodynamics. On this thesis we state and prove some of the main results in the area of thermodynamical formalism. The first chapter is an introduction to ergodic theory. Some of the main theorems are proved and there is also a quite thorough study of the topology that arises in Borel probability measure spaces. In the second chapter we introduce the notions of topological pressure and measure theoretic entropy and we state and prove two very important theorems, Shannon-McMillan-Breiman theorem and the Variational Principle. Distance expanding maps and their connection with the calculation of topological pressure cover the third chapter. The fourth chapter introduces Gibbs states and the very important Perron-Frobenius Operator. The fifth chapter establishes the connection between pressure and geometry. Topological pressure is used in the calculation of Hausdorff dimensions. Finally the sixth chapter introduces the notion of conformal measures.
Contributing Partner: UNT Libraries
FIRST PREV 1 2 NEXT LAST