You limited your search to:

  Partner: UNT Libraries
 Degree Discipline: Materials Science
 Collection: UNT Theses and Dissertations
Characterization of cure kinetics and physical properties of a high performance, glass fiber-reinforced epoxy prepreg and a novel fluorine-modified, amine-cured commercial epoxy.

Characterization of cure kinetics and physical properties of a high performance, glass fiber-reinforced epoxy prepreg and a novel fluorine-modified, amine-cured commercial epoxy.

Date: December 2003
Creator: Bilyeu, Bryan
Description: Kinetic equation parameters for the curing reaction of a commercial glass fiber reinforced high performance epoxy prepreg composed of the tetrafunctional epoxy tetraglycidyl 4,4-diaminodiphenyl methane (TGDDM), the tetrafunctional amine curing agent 4,4'-diaminodiphenylsulfone (DDS) and an ionic initiator/accelerator, are determined by various thermal analysis techniques and the results compared. The reaction is monitored by heat generated determined by differential scanning calorimetry (DSC) and by high speed DSC when the reaction rate is high. The changes in physical properties indicating increasing conversion are followed by shifts in glass transition temperature determined by DSC, temperature-modulated DSC (TMDSC), step scan DSC and high speed DSC, thermomechanical (TMA) and dynamic mechanical (DMA) analysis and thermally stimulated depolarization (TSD). Changes in viscosity, also indicative of degree of conversion, are monitored by DMA. Thermal stability as a function of degree of cure is monitored by thermogravimetric analysis (TGA). The parameters of the general kinetic equations, including activation energy and rate constant, are explained and used to compare results of various techniques. The utilities of the kinetic descriptions are demonstrated in the construction of a useful time-temperature-transformation (TTT) diagram and a continuous heating transformation (CHT) diagram for rapid determination of processing parameters in the processing of prepregs. Shrinkage ...
Contributing Partner: UNT Libraries
Cure kinetics and processing parameters of neat and reinforced high performance epoxy resins : evaluation of techniques

Cure kinetics and processing parameters of neat and reinforced high performance epoxy resins : evaluation of techniques

Access: Use of this item is restricted to the UNT Community.
Date: December 1999
Creator: Bilyeu, Bryan
Description: Kinetic equation parameters for the curing reaction of a commercial glass fiber reinforced high performance epoxy prepreg composed of the tetrafunctional epoxy tetraglycidyl 4,4-diaminodiphenyl methane (TGDDM), the tetrafunctional amine curing agent 4,4’-diaminodiphenylsulfone (DDS) and an ionic initiator/accelerator, are determined by various thermal analysis techniques and the results compared. The reaction is monitored by heat generated determined by differential scanning calorimetry (DSC). The changes in physical properties indicating increasing conversion are followed by shifts in glass transition temperature determined by DSC and temperature-modulated DSC (TMDSC), thermomechanical (TMA) and dynamic mechanical (DMA) analysis and thermally stimulated depolarization (TSD). Changes in viscosity, also indicative of degree of conversion, are monitored by DMA. Thermal stability as a function of degree of cure is monitored by thermogravimetric analysis (TGA). The parameters of the general kinetic equations, including activation energy and rate constant, are explained and used to compare results of various techniques. The utilities of the kinetic descriptions are demonstrated in the construction of a useful time-temperature-transformation (TTT) diagram for rapid determination of processing parameters in the processing of prepregs. Copyright is held by the author, unless otherwise noted. All rights reserved. Files: Thesis.pdf Special Conditions
Contributing Partner: UNT Libraries
Hypotheses for Scratch Behavior of Polymer Systems that Recover

Hypotheses for Scratch Behavior of Polymer Systems that Recover

Date: May 2002
Creator: Bujard, Bernard
Description: Scratch recovery is a desirable property of many polymer systems. The reason why some materials have demonstrated excellent scratch recovery while others do not has been a mystery. Explaining the scratch resistance based upon the hardness of a material or its crosslink density is incorrect. In this thesis, novel polymers were tested in an attempt to discover materials that show excellent scratch recovery - one of the most important parameters in determining the wear of a material. Several hypotheses were developed in an attempt to give an accurate picture of how the chemical structure of a polymer affects its scratch recovery. The results show that high scratch recovery is a complex phenomenon not solely dependent upon the presence of electronegative atoms such as fluorine.
Contributing Partner: UNT Libraries
Charge interaction effects in epoxy with cation exchanged montmorillonite clay and carbon nanotubes.

Charge interaction effects in epoxy with cation exchanged montmorillonite clay and carbon nanotubes.

Date: May 2005
Creator: Butzloff, Peter Robert
Description: The influence of charge heterogeneity in nanoparticles such as montmorillonite layered silicates (MLS) and hybrid systems of MLS + carbon nanotubes was investigated in cured and uncured epoxy. Epoxy nanocomposites made with cation-exchanged montmorillonite clay were found to form agglomerates near a critical concentration. Using differential scanning calorimetry it was determined that the mixing temperature of the epoxy + MLS mixture prior to the addition of the curing agent critically influenced the formation of the agglomerate. Cured epoxy samples showed evidence of the agglomerate being residual charge driven by maxima and minima in the concentration profiles of thermal conductivity and dielectric permittivity respectively. A hybrid nanocomposite of MLS and aniline functionalized multi walled nanotubes indicated no agglomerates. The influence of environmentally and process driven properties on the nanocomposites was investigated by examination of moisture, ultrasound, microwaves and mechanical fatigue on the properties of the hybrid systems. The results point to the importance of charge screening by adsorbed or reacted water and on nanoparticulates.
Contributing Partner: UNT Libraries
Preparation and Characterization of a Treated Montmorillonite Clay and Epoxy Nanocomposite

Preparation and Characterization of a Treated Montmorillonite Clay and Epoxy Nanocomposite

Date: December 2000
Creator: Butzloff, Peter Robert
Description: Montmorillonite reinforced polymers are a new development in the area of nanocomposite materials. Since reinforcement of epoxy is important to the development of high strength adhesives and composite matrices, the introduction of montmorillonite to epoxy is of interest. Compositional effects on epoxy reactivity, on molecular relaxation, and on mechanical properties were investigated. Change in reactivity was determined by Differential Scanning Calorimetry. Tensile properties at room temperature indicated improved modulus and retention of strength of the epoxy matrix but a decreased elongation to failure. Depression of dry nanocomposite glass transition was observed for nanocomposites beyond 5% by weight montmorillonite. Samples that were saturated with water showed lower moduli due to the epoxy matrix. The greatest moisture absorption rate was found at 7%, the least at 3%.
Contributing Partner: UNT Libraries
Modifications of epoxy resins for improved mechanical and tribological performances and their effects on curing kinetics.

Modifications of epoxy resins for improved mechanical and tribological performances and their effects on curing kinetics.

Date: May 2008
Creator: Chonkaew, Wunpen
Description: A commercial epoxy, diglycidyl ether of bisphenol-A, was modified by two different routes. One was the addition of silica to produce epoxy composites. Three different silane coupling agents, glycidyloxypropyl trimethoxy silane (GPS), -methacryloxypropyl trimethoxy silane (MAMS) and 3-mercaptopropyltriethoxy silane (MPS), were used as silica-surface modifiers. The effects of silica content, together with the effects of chemical surface treatment of silica, were studied. The results indicate that epoxy composites with silica exhibit mechanical and tribological properties as well as curing kinetics different than the pure epoxy. The optimum silica content for improved mechanical and tribological properties (low friction coefficient and wear rate) was different for each type of silane coupling agent. An unequivocal correlation between good mechanical and improved tribological properties was not found. Activation energy of overall reactions was affected by the addition of silica modified with MAMS and MPS, but not with GPS. The second route was modification by fluorination. A new fluoro-epoxy oligomer was synthesized and incorporated into a commercial epoxy by a conventional blending method. The oligomer functioned as a catalyst in the curing of epoxy and polyamine. Thermal stability of the blends decreased slightly at a high oligomer content. Higher wear resistance, lower friction coefficient and ...
Contributing Partner: UNT Libraries
Characterization of methyltrimethoxysilane sol-gel polymerization and the resulting aerogels.

Characterization of methyltrimethoxysilane sol-gel polymerization and the resulting aerogels.

Access: Use of this item is restricted to the UNT Community.
Date: August 2003
Creator: Dong, Hanjiang
Description: Methyl-functionalized porous silica is of considerable interest as a low dielectric constant film for semiconductor devices. The structural development of these materials appears to affect their gelation behaviors and impact their mechanical properties and shrinkage during processing. 29Si solution NMR was used to follow the structural evolution of MTMS (methyltrimethoxysilane) polymerization to gelation or precipitation, and thus to better understand the species that affect these properties and gelation behaviors. The effects of pH, water concentration, type of solvents, and synthesis procedures (single step acid catalysis and two-step acid/base catalysis) on MTMS polymerization were discussed. The reactivity of silicon species with different connectivity and the extent of cyclization were found to depend appreciably on the pH value of the sol. A kinetic model is presented to treat the reactivity of both silicon species involved in condensations separately based on the inductive and steric effects of these silicon species. Extensive cyclization in the presence of acid, which was attributed to the steric effects among numerous reaction pathways for the first time, prevents MTMS gelation, whereas gels were obtained from the two-step method with nearly random condensations. The experimental degree of condensation (DC) at the gel point using the two-step procedure was determined ...
Contributing Partner: UNT Libraries
The effects of color concentrate in polyolefins.

The effects of color concentrate in polyolefins.

Access: Use of this item is restricted to the UNT Community.
Date: December 2001
Creator: Flora, Paul
Description: Throughout history consumer products were generally manufactured from wood and metal. They either had to hold their natural color or become subject to painting. When plastics entered the industry, it was recognized for its ease of shaping, re-usability, physical properties and its low cost. One of plastics' greatest benefits is its ability to hold a given color from within allowing it to avoid use of paint. This paper will give a brief overview on the effects of pigments when incorporated in a polyolefin. It will provide a classification of the main types of pigments and how each effect the properties of the product through: crystallization, weatherability, opacity, coloristic values and of course viscosity.
Contributing Partner: UNT Libraries
Stability of Field Emitter Arrays to Oxygen Exposures

Stability of Field Emitter Arrays to Oxygen Exposures

Date: December 2002
Creator: Godbole, Soumitra Kumar
Description: The purpose of these experiments was to determine the degradation mechanisms of molybdenum based field emitter arrays to oxygen exposures and to improve the overall reliability. In addition, we also evaluated the emission current stability of gold-coated field emitter arrays to oxygen exposures. oxygen at 1x10-6 torr was introduced into the chamber through a leak valve for different lengths of time and duty cycles. To ensure identical oxygen exposure and experimental measurement conditions, tips on half the area of the FEA were fully coated with gold and the other half were left uncoated. The emission current from the gold coated half was found to degrade much less than that from the uncoated half, in the presence of oxygen. Also in the absence of oxygen, the emission current recovery for the gold-coated side was much quicker than that for the uncoated side.
Contributing Partner: UNT Libraries
Analysis of Thermoplastic Polyimide + Polymer Liquid Crystal Blends

Analysis of Thermoplastic Polyimide + Polymer Liquid Crystal Blends

Date: May 1998
Creator: Gopalanarayanan, Bhaskar
Description: Thermoplastic polyimides (TPIs) exhibit high glass transition temperatures (Tgs), which make them useful in high performance applications. Amorphous and semicrystalline TPIs show sub-Tg relaxations, which can aid in improving strength characteristics through energy absorption. The a relaxation of both types of TPIs indicates a cooperative nature. The semicrystalline TPI shows thermo-irreversible cold crystallization phenomenon. The polymer liquid crystal (PLC) used in the blends is thermotropic and with longitudinal molecular structure. The small heat capacity change (ACP) associated with the glass transition indicates the PLC to be rigid rod in nature. The PLC shows a small endotherm associated with the melting. The addition of PLC to the semicrystalline TPI does not significantly affect the Tg or the melting point (Tm). The cold crystallization temperature (Tc) increases with the addition of the PLC, indicating channeling phenomenon. The addition of PLC also causes a negative deviation of the ACP, which is another evidence for channeling. The TPI, PLC and their blends show high thermal stability. The semicrystalline TPI absorbs moisture; this effect decreases with the addition of the PLC. The absorbed moisture does not show any effect on the degradation. The addition of PLC beyond 30 wt.% does not result in an improvement ...
Contributing Partner: UNT Libraries
FIRST PREV 1 2 3 NEXT LAST