Search Results

open access

Analysis of Thermoplastic Polyimide + Polymer Liquid Crystal Blends

Description: Thermoplastic polyimides (TPIs) exhibit high glass transition temperatures (Tgs), which make them useful in high performance applications. Amorphous and semicrystalline TPIs show sub-Tg relaxations, which can aid in improving strength characteristics through energy absorption. The a relaxation of both types of TPIs indicates a cooperative nature. The semicrystalline TPI shows thermo-irreversible cold crystallization phenomenon. The polymer liquid crystal (PLC) used in the blends is thermotropic… more
Date: May 1998
Creator: Gopalanarayanan, Bhaskar
Partner: UNT Libraries
open access

Analyses of Particulate Contaminants in Semiconductor Processing Fluids

Description: Particle contamination control is a critical issue for the semiconductor industry. In the near future, this industry will be concerned with the chemical identities of contaminant particles as small as 0.01 pm in size. Therefore, analytical techniques with both high chemical sensitivity and spatial resolution are required. Transmission electron microscopy (TEM) provides excellent spatial resolution and yields structural and compositional information. It is rarely used, however, due to the diffic… more
Date: August 1998
Creator: Xu, Daxue
Partner: UNT Libraries

Cure Kinetics and Processing Parameters of Neat and Reinforced High Performance Epoxy Resins: Evaluation of Techniques

Description: Kinetic equation parameters for the curing reaction of a commercial glass fiber reinforced high performance epoxy prepreg composed of the tetrafunctional epoxy tetraglycidyl 4,4-diaminodiphenyl methane (TGDDM), the tetrafunctional amine curing agent 4,4’-diaminodiphenylsulfone (DDS) and an ionic initiator/accelerator, are determined by various thermal analysis techniques and the results compared. The reaction is monitored by heat generated determined by differential scanning calorimetry (DSC). … more
Access: Restricted to UNT Community Members. Login required if off-campus.
Date: December 1999
Creator: Bilyeu, Bryan
Partner: UNT Libraries
Back to Top of Screen