This system will be undergoing maintenance Monday, January 23 from 8:00 AM to 12:00 PM CST.

  You limited your search to:

  Partner: UNT Libraries
 Department: Departments of Computer Science
 Degree Discipline: Computer Science
 Collection: UNT Theses and Dissertations
Urban surface characterization using LiDAR and aerial imagery.

Urban surface characterization using LiDAR and aerial imagery.

Date: December 2009
Creator: Sarma, Vaibhav
Description: Many calamities in history like hurricanes, tornado and flooding are proof to the large scale impact they cause to the life and economy. Computer simulation and GIS helps in modeling a real world scenario, which assists in evacuation planning, damage assessment, assistance and reconstruction. For achieving computer simulation and modeling there is a need for accurate classification of ground objects. One of the most significant aspects of this research is that it achieves improved classification for regions within which light detection and ranging (LiDAR) has low spatial resolution. This thesis describes a method for accurate classification of bare ground, water body, roads, vegetation, and structures using LiDAR data and aerial Infrared imagery. The most basic step for any terrain modeling application is filtering which is classification of ground and non-ground points. We present an integrated systematic method that makes classification of terrain and non-terrain points effective. Our filtering method uses the geometric feature of the triangle meshes created from LiDAR samples and calculate the confidence for every point. Geometric homogenous blocks and confidence are derived from TIN model and gridded LiDAR samples. The results from two representations are used in a classifier to determine if the block belongs ground or ...
Contributing Partner: UNT Libraries