You limited your search to:

  Partner: UNT Libraries
 Decade: 1990-1999
 Degree Discipline: Chemistry
 Degree Level: Doctoral
 Collection: UNT Theses and Dissertations
Adhesion/diffusion barrier layers for copper integration: carbon-silicon polymer films and tantalum substrates

Adhesion/diffusion barrier layers for copper integration: carbon-silicon polymer films and tantalum substrates

Date: December 1999
Creator: Chen, Li
Description: The Semiconductor Industry Association (SIA) has identified the integration of copper (Cu) with low-dielectric-constant (low-k) materials as a critical goal for future interconnect architectures. A fundamental understanding of the chemical interaction of Cu with various substrates, including diffusion barriers and adhesion promoters, is essential to achieve this goal. The objective of this research is to develop novel organic polymers as Cu/low-k interfacial layers and to investigate popular barrier candidates, such as clean and modified tantalum (Ta) substrates. Carbon-silicon (C-Si) polymeric films have been formed by electron beam bombardment or ultraviolet (UV) radiation of molecularly adsorbed vinyl silane precursors on metal substrates under ultra-high vacuum (UHV) conditions. Temperature programmed desorption (TPD) studies show that polymerization is via the vinyl groups, while Auger electron spectroscopy (AES) results show that the polymerized films have compositions similar to the precursors. Films derived from vinyltrimethyl silane (VTMS) are adherent and stable on Ta substrates until 1100 K. Diffusion of deposited Cu overlayers is not observed below 800 K, with dewetting occurred only above 400 K. Hexafluorobenzene moieties can also be incorporated into the growing film with good thermal stability. Studies on the Ta substrates demonstrate that even sub-monolayer coverages of oxygen or carbide on polycrystalline ...
Contributing Partner: UNT Libraries
Chemical Equilibria in Binary Solvents

Chemical Equilibria in Binary Solvents

Date: August 1997
Creator: McHale, Mary E. R.
Description: Dissertation research involves development of Mobile Order Theory thermodynamic models to mathematically describe and predict the solubility, spectral properties, protonation equilibrium constants and two-phase partitioning behavior of solutes dissolved in binary solvent mixtures of analytical importance. Information gained provide a better understanding of solute-solvent and solvent-solvent interactions at the molecular level, which will facilitate the development of better chemical separation methods based upon both gas-liquid and high-performance liquid chromatography, and better analysis methods based upon complexiometric and spectroscopic methods. Dissertation research emphasizes chemical equilibria in systems containing alcohol cosolvents with the understanding that knowledge gained will be transferable to more environmentally friendly aqueous-organic solvent mixtures.
Contributing Partner: UNT Libraries
Experimental and Theoretical Studies of Polycarbocyclic Compounds

Experimental and Theoretical Studies of Polycarbocyclic Compounds

Date: May 1998
Creator: Shukla, Rajesh, 1964-
Description: Part I. Diels-Alder cycloadditions of 1,2,3,4,9,9-hexachloro-1α,4α,4aα,8aβ-tetrahydro-l,4-methanonaphthalene (32) and 1,2,3,4,9,9-hexachloro-lα,4α,6,7- tetrahydro-l,4-methanonaphthalene (33) to 4-methyl- and 4-phenyl-l,2,4-triazoline-3,5-dione [MTAD and PTAD, respectively] and to N-methylmaleimide (NMM) have been studied. The structures of several of the resulting cycloadducts were determined by X-ray crystallographic methods. The observed stereoselectivity of each of these Diels-Alder reactions was further investigated via application of theoretical methods. Thus, semiempirical (AMI) and ab initio molecular orbital calculations were used to calculate relative energies. Ab initio calculations were employed to perform frontier molecular orbital analyses of diene-dienophile interactions.
Contributing Partner: UNT Libraries
Explorations with polycarbocyclic cage compounds

Explorations with polycarbocyclic cage compounds

Date: August 1999
Creator: Chong, Hyun-Soon
Description: A variety of novel cage-functionalized pyridyl containing crown ethers have been prepared for use in selective alkali metal complexation studies. A highly preorganized, cage-functionalized cryptand also has been designed and has been synthesized for use as a selective Li+ complexant. The alkali metal picrate extraction profiles of these cage-functionalized crown ethers also have been studied. Novel cage-functionalized diazacrown ethers have been prepared for selective alkali metal complexation studies. Alkali metal picrate extraction experiments have been performed by using this new class of synthetic ionophores to investigate the effects of cage-annulation and the influence of N-pivot lariat sidearms upon their resulting complexation properties. Novel pyridyl containing calix[4]arene receptors were prepared. Analysis of their respective 1H NMR and 13C NMR spectra suggests that calix[4]arene moieties in the ligand occupy the cone conformation. The complexation properties of these host molecules were estimated by performing a series of alkali metal picrate extraction experiments. An optically active cage-functionalized crown ether which contains a binaphthyl moiety as the chiral unit was prepared. The ability of the resulting optically active crown ether to distinguish between enantiomers of guest ammonium ions (i.e., phenylethylamonium and phenylglycinate salts) in transport experiments was investigated. Hexacyclo[11.2.1.02,12.05,10.05,15.010,14]hexadeca-6,8-diene-4,11-dione was prepared from hexacyclo[7.4.2.01,9.03,7.04,14.06,15] pentadeca-10,12-diene-2,8-dione. Unanticipated ...
Contributing Partner: UNT Libraries
Interactions of Clean and Sulfur-modified Reactive Metal Surfaces with Aqueous Vapor and Liquid Environments : A Combined Ultra-high Vacuum/electrochemistry Study

Interactions of Clean and Sulfur-modified Reactive Metal Surfaces with Aqueous Vapor and Liquid Environments : A Combined Ultra-high Vacuum/electrochemistry Study

Date: May 1998
Creator: Lin, Tien-Chih, 1966-
Description: The focus of this research is to explore the molecular-level interactions between reactive metal surfaces and aqueous environments by combined ultra-high vacuum/electrochemistry (UHV-EC) methodology. The objectives of this work are to understand (1) the effects of sulfate ions on the passivity of metal oxide/hydroxide surface layer, (2) the effects of sulfur-modification on the evolution of metal oxide/hydroxide surface layer, and (3) the effects of sulfur adsorbate on cation adsorption at metal surfaces.
Contributing Partner: UNT Libraries
Kinetics and Mechanisms of Metal Carbonyls

Kinetics and Mechanisms of Metal Carbonyls

Date: May 1998
Creator: Ladogana, Santino
Description: Pulsed laser flash photolysis with both visible and infrared detection has been applied to the study of the displacement of weakly coordinating ligands (Lw) by strongly "trapping" nucleophiles (Ls) containing either an olefinic functionality (Ls = 1-hexene, 1-decene, 1-tetradecene) or nitrogen (Ls = acetonitrile, hydrocinnamonitrile) from the photogenerated 16 electron pentacarbonylchromium (0) intermediate. 5-Chloropent-l-ene (Cl-ol), a potentially bidentate ligand, has been shown to form (ol-Cl) pentacarbonylchromium (0), in which Cl-ol is bonded to Cr via a lone pair on the chlorine, and isomerize to (Cl-ol) pentacarbonylchromium (0), in which Cl-ol is bonded to the olefinic functionality on the submillisecond time scale. This process has been studied in both the infrared and visible region employing both fluorobenzene or n-heptane as the "inert" diluent. Parallel studies employing 1-chlorobutane and 1-hexene were also evaluated and showed great similiarity with the Cl-ol system. The data supported a largely dissociative process with a possibility of a small interchange process involving the H's on the alkyl chain. Studies were also carried out for various Cr(CO)6/arene/Ls systems (arene = various alkyl or halogenated substituted benzenes). The data indicated that for both C6H5R (R=various alkyl chains) or multi-alkyl substituted arenes (i.e. o-xylene, 1,2,3-trimethylbenzene) containing an "unhindered" ring-edge, bonding ...
Contributing Partner: UNT Libraries
Part I: Solid State Studies of Larger Calixarenes : Part II: Synthesis and Characterization of Metallocalixarenes

Part I: Solid State Studies of Larger Calixarenes : Part II: Synthesis and Characterization of Metallocalixarenes

Date: May 1998
Creator: Smith, Janna Marie
Description: Calixarenes are a class of macrocyclic compounds that have garnered interest in large part because of their ability to form host-guest complexes with various types of molecules. For all of the studies of complex formation by calixarenes, most of the work to date has concentrated upon the smaller calixarenes, and little is understood about the relationship between the complexes formed when in solution and that observed in the solid state. The first part of the study, presented in Chapter 3, is of the solid-state properties of two of the larger calixarenes, and in comparison to other reported structures reveals patterns to the observed conformations both in the solid state and in solution. The formation of metal complexes has also been investigated and has focused extensively upon the metals as guests. Thus, the ability of the calixarenes to act as ligands in inorganic complexes has been virtually untapped, despite the polyoxo binding site they can easily provide, and very few metallocalixarenes have been reported. The second part of this study goes beyond the simple solid-state properties of such compounds, and involves the synthesis of several metallocalixarenes as part of a project directed at the functionalization of calixarenes with the components of ...
Contributing Partner: UNT Libraries
A Quenchofluorometric Study of Polycyclic Aromatic Hydrocarbons in Molecularly Organized Media

A Quenchofluorometric Study of Polycyclic Aromatic Hydrocarbons in Molecularly Organized Media

Date: May 1998
Creator: Pandey, Siddharth
Description: Detection, identification and separation of polycyclic aromatic compounds in environmental samples are of extreme importance since many of these compounds are well known for their potential carcinogenic and/or mutagenic activities. Selective quenching of molecular fluorescence can be utilized effectively to analyze mixtures containing different polycyclic aromatic hydrocarbons. Molecularly organized assemblies are used widely in detection and separation of these compounds mainly because of less toxicity and enhanced solubilization capabilities associated with these media. Feasibility of using nitromethane and the alkylpyridinium cation as selective fluorescence quenching agents for discriminating between alternant versus nonalternant polycyclic aromatic hydrocarbons (PAHs) is critically examined in several molecularly organized micellar solvent media. Fluorescence quenching is used to probe the structural features in mixed micelles containing the various combinations of anionic, cationic, nonionic and zwitterionic surfactants. Experimental results provide valuable information regarding molecular interactions between the dissimilar surfactants.
Contributing Partner: UNT Libraries
Solvent and Ionic Complexes of the Calix[6]arenes

Solvent and Ionic Complexes of the Calix[6]arenes

Date: December 1997
Creator: Wolfgong, William J.
Description: One of the more attractive attributes of calixarenes is their wide variety of possible conformations and hence cavity shapes. However, the flexibility that allows this long-range benefit gives rise to major synthetic challenges when working with the larger members of the family. O-alkylations have proven to be the most widely employed synthetic routes to "functionalization" of the calixarenes, and these have shown a dependence upon both solvent and the metal ions present. Surprisingly, there have been no structural data presented concerning the complexes between the simple unsubstituted calix[6]arenes and the metal ions of groups 1 and 2. The structures of four complexes, containing cesium, rubidium, and calcium are reported as determined by X-ray crystallography. The solution behavior of the complexes for both representative groups is also discussed, in particular with regard to conformational stabilization of the calix[6]arenes and the role of solvent upon this stabilization. These complexes are also investigated as starting materials for the selective functionalization of the calix[6]arenes.
Contributing Partner: UNT Libraries
Structural Elucidation of tert-Butyllithium/Lithium Alkoxide and Lithium Hydride/Lithium Alkoxide Mixed Aggregates

Structural Elucidation of tert-Butyllithium/Lithium Alkoxide and Lithium Hydride/Lithium Alkoxide Mixed Aggregates

Date: December 1997
Creator: Nguyen, Hanh D.
Description: The effects of lithium alkoxides on the rates of reactions and on the structures of a series of tert-butyllithium/lithium alkoxide mixed aggregates were studied, where the alkoxides were iso-butoxide, tert-butoxide and menthoxide. It was found that their effects depend not only on their amount present, but also on their steric bulk. The tert-butyllithium/lithium alkoxide mixed aggregates were exposed to UV light or heat to form lithium hydride/lithium alkoxide mixed aggregates. The aggregation states were assigned from either 13C-6Li coupling or a new technique based on the relative intensity of NMR peaks using different nuclei. The compounds formed depend upon the method of formation and the alkoxide. The unique properties of the lithium hydride/lithium alkoxide mixed aggregates are their high solubility in hydrocarbon solutions, very reactive bases, showing 6Li-1H couplings, and having only one hydride ion per aggregate. Their formation, reactivity, solubility, and aggregation states were found to depend on the size of lithium alkoxides. X-ray crystal structures of lithium tert-butoxide and lithium menthoxide were also studied and found to be hexameric.
Contributing Partner: UNT Libraries
FIRST PREV 1 2 NEXT LAST