Search Results

open access

Improving the Long-term Performance of PVC Compositions

Description: PVC are extensively applied in many fields, such as cables, pipes, vehicles, shoes, toys and infusion bags. Generally, plasticizers are blended with PVC to improve the ability of process in industrial production; however, the toxic plasticizers will gradually migrate to the surface of products and such a leakage results in brittleness of plasticized PVC and environmental pollution. In other words, humans are frequently exposed to the potential risks. According to previous researches, cross-link… more
Date: December 2016
Creator: Yang, Yu Chia
Partner: UNT Libraries
open access

In-situ Analysis of the Evolution of Surfaces and Interfaces under Applied Coupled Stresses

Description: To study the effect of the substrate support on the nanoscale contact, three different regimes, i.e., graphene on rigid (ultra-crystalline diamond) and on elastic (Polydimethylsiloxane) supports and free-standing graphene, were considered. The contribution of the graphene support to the mechanical and electrical characteristics of the graphene/metal contact was studied using the conductive atomic force microscopy (AFM) technique.The results revealed that the electrical conductivity of the graph… more
Date: August 2020
Creator: Lee, Ji Hyung
Partner: UNT Libraries

In-situ Electrochemical Surface Engineering in Additively Manufactured CoCrMo for Enhanced Biocompatibility

Description: Laser-based additive manufacturing is inherently associated with extreme, unprecedented, and rapid thermokinetics which impact the microstructural evolution in a built component. Such a unique, near to non-equilibrium microstructure/phase evolution in laser additively manufactured metallic components impact their properties in engineering application. In light of this, the present work investigates the unique microstructural traits as a result of process induced spatial and temporal variation i… more
This item is restricted from view until June 1, 2024.
Date: May 2023
Creator: Mazumder, Sangram
Partner: UNT Libraries
open access

In Vitro Behavior of AZ31B Mg-Hydroxyapatite Metallic Matrix Composite Surface Fabricated via Friction Stir Processing

Description: Magnesium and its alloys have been considered for load-bearing implant materials due to their similar mechanical properties to the natural bone, excellent biocompatibility, good bioactivity, and biodegradation. Nevertheless, the uncontrollable corrosion rate in biological environment restrains their application. Hydroxyapatite (HA, Ca10(PO4)6(OH)2) is a widely used bio-ceramic which has bone-like mineral structure for bone fixation. Poor fracture toughness of HA makes it not suitable for load-b… more
Date: August 2016
Creator: Ho, Yee Hsien
Partner: UNT Libraries
open access

Indentation induced deformation in metallic materials.

Description: Nanoindentation has brought in many features of research over the past decade. This novel technique is capable of producing insights into the small ranges of deformation. This special point has brought a lot of focus in understanding the deformation behavior under the indenter. Nickel, iron, tungsten and copper-niobium alloy system were considered for a surface deformation study. All the samples exhibited a spectrum of residual deformation. The change in behavior with indentation and the materi… more
Date: December 2005
Creator: Vadlakonda, Suman
Partner: UNT Libraries

Influence of Externally Applied Magnetic Field on the Mechanical Behavior of Paramagnetic Materials

Description: Current ways to alter the microstructure of materials are usually through heat treatments, alloying, and other physical metallurgical methods. Recent efforts in the 21st century are focused on altering the microstructure of a material without physical contact which can be achieved through exposure to a magnetic field (MF). The motivation of this research is to study the quantum effects by subjecting solid-state metals to exposure of MFs. Many of the popular metals currently used in industry are… more
This item is restricted from view until January 1, 2028.
Date: December 2022
Creator: Reeder, Jessica Phoebe
Partner: UNT Libraries
open access

Influence of High Strain Rate Compression on Microstructure and Phase Transformation of NiTi Shape Memory Alloys

Description: Since NiTi shape memory alloy (SMA) was discovered in the early 1960s, great progress has been made in understanding the properties and mechanisms of NiTi SMA and in developing associated products. For several decades, most of the scientific research and industrial interests on NiTi SMA has focused on its superelastic applications in the biomedical field and shape memory based “smart” devices, which involves the low strain rate (around 0.001 s^-1) response of NiTi SMA. Due to either stress-indu… more
Date: May 2016
Creator: Qiu, Ying
Partner: UNT Libraries
open access

The Influence of Ohmic Metals and Oxide Deposition on the Structure and Electrical Properties of Multilayer Epitaxial Graphene on Silicon Carbide Substrates

Description: Graphene has attracted significant research attention for next generation of semiconductor devices due to its high electron mobility and compatibility with planar semiconductor processing. In this dissertation, the influences of Ohmic metals and high dielectric (high-k) constant aluminum oxide (Al2O3) deposition on the structural and electrical properties of multi-layer epitaxial graphene (MLG) grown by graphitization of silicon carbide (SiC) substrates have been investigated. Uniform MLG was s… more
Date: May 2011
Creator: Maneshian, Mohammad Hassan
Partner: UNT Libraries
open access

The Influence of Particle Morphology and Heat Treatment on the Microstructural Evolution of Silver Inks for Additively Manufactured RF Applications: A Comparison between Nanoflake and Reactive Inks

Description: In recent years, advancements in additive manufacturing (AM) technologies have paved the way for 3D-printed flexible hybrid electronics (FHE) and created opportunities for extending these gains to RF applications. However, printed metal interconnects and devices are typically characterized by high porosity and chemical impurities that significantly limit their electrical conductivity and RF performance compared to bulk equivalents. Using direct ink writing (DIW), two silver inks, a nanoflake su… more
Date: May 2023
Creator: Summers, Jason Masao
Partner: UNT Libraries
open access

An Initial Study of Binary and Ternary Ti-based Alloys Manufactured Using Laser Engineered Net Shaping (LENSTM)

Description: In this study an initial assessment of the composition – microstructure – property relationships in binary and ternary Ti – based systems are made possible using LENSTM technology. Laser Engineering Net Shaping (LENSTM), a rapid prototyping, directed laser deposition methodology of additive manufacturing (AM) was used to create bulk homogenous specimens that are compositionally graded. Compositionally graded specimens were made possible by incorporating elemental blends of powder during the LEN… more
Date: December 2015
Creator: Gray, Alyn M.
Partner: UNT Libraries
open access

An Integrated Approach to Determine Phenomenological Equations in Metallic Systems

Description: It is highly desirable to be able to make predictions of properties in metallic materials based upon the composition of the material and the microstructure. Unfortunately, the complexity of real, multi-component, multi-phase engineering alloys makes the provision of constituent-based (i.e., composition or microstructure) phenomenological equations extremely difficult. Due to these difficulties, qualitative predictions are frequently used to study the influence of microstructure or composition o… more
Date: December 2012
Creator: Ghamarian, Iman
Partner: UNT Libraries
open access

Integrated Computational and Experimental Approach to Control Physical Texture During Laser Machining of Structural Ceramics

Description: The high energy lasers are emerging as an innovative material processing tool to effectively fabricate complex shapes on the hard and brittle structural ceramics, which previously had been near impossible to be machined effectively using various conventional machining techniques. In addition, the in-situ measurement of the thermo-physical properties in the severe laser machining conditions (high temperature, short time duration, and small interaction volume) is an extremely difficult task. As a… more
Date: December 2013
Creator: Vora, Hitesh D.
Partner: UNT Libraries

Integration, Stability, and Doping of Mono-Elemental and Binary Transition Metal Dichalcogenide Van der Waals Solids for Electronics and Sensing Devices

Description: In this work, we have explored 2D semiconducting transition metal dichalcogenides (TMDs), black phosphorus (BP), and graphene for various applications using liquid and mechanical exfoliation routes. The topical areas of interest that motivate our work include considering factors such as device integration, stability, doping, and the effect of gasses to modulate the electronic transport characteristics of the underlying 2D materials. In the first area, we have integrated solution-processed trans… more
This item is restricted from view until June 1, 2024.
Date: May 2022
Creator: Mehta, Ravindra K
Partner: UNT Libraries
open access

Interspecimen Study of Bone to Relate Macromechanical, Nanomechanical and Compositional Changes Across the Femoral Cortex of Bone

Description: Mechanics of bone is widely studied and researched, mainly for the study of fracture. This has been done mostly on a macro scale. In this work hierarchical nature of bone has been explored to investigate bone mechanics in more detail. Flexural test were done to classify the bones according to their strength and deflection. Raman spectroscopy analysis was done to map the mineralization, collagen crosslinking changes across the thickness of the bone. Nanoindentation was done to map indentation ha… more
Date: May 2013
Creator: Nar, Mangesh
Partner: UNT Libraries
open access

Investigation into the Semiconducting and Device Properties of MoTe2 and MoS2 Ultra-Thin 2D Materials

Description: The push for electronic devices on smaller and smaller scales has driven research in the direction of transition metal dichalcogenides (TMD) as new ultra-thin semiconducting materials. These ‘two-dimensional' (2D) materials are typically on the order of a few nanometers in thickness with a minimum all the way down to monolayer. These materials have several layer-dependent properties such as a transition to direct band gap at single-layer. In addition, their lack of dangling bonding and remarkab… more
Date: May 2018
Creator: Sirota, Benjamin
Partner: UNT Libraries
open access

Investigation of growth kinetics of self-assembling monolayers by means of contact angle, optical ellipsometry, angle-resolved XPS and IR spectroscopy.

Description: Absorption of octadecanethiol and p-nitrobenzenethiol onto gold surfaces from ethanol solutions has been studied by means of contact angle, optical ellipsometry, angle-resolved XPS (ARXPS), and with grazing angle total reflection FTIR. Growth of the monolayers from dilute solutions has been monitored and Langmuir isotherm adsorption curves were fitted to experimental data. A saturated film is formed within approximately 5h after immersion in solutions of concentrations ranging from 0.0005mM to … more
Date: August 2004
Creator: Jakubowicz, Agnieszka
Partner: UNT Libraries

Investigation of Porous Ceramic Structure by Freeze-Casting

Description: The design and fabrication of porous ceramic materials with anisotropic properties has, in recent years, gained popularity due to their potential application in various areas that include medical, energy, defense, space, and aerospace. Freeze-casting is an effective, low-cost, and safe method as a wet shaping technique to create these structures. To control the morphology of these materials, many critical factors were found to play an important role. In this dissertation, the processing paramet… more
Date: May 2021
Creator: Bakkar, Said Adnan
Partner: UNT Libraries

Investigation of Room Temperature Sputtering and Laser Annealing of Chalcogen Rich TMDs for Opto-Electronics

Description: Chalcogen-rich transition-metal dichalcogenide (TMD) magnetron sputtering targets were custom manufactured via ball milling and sintering in the interest of depositing p-type chalcogen-rich films. Room temperature radio frequency (RF) magnetron sputtering produced ultra-thin amorphous precursor of WSx and MoSx (where x is between 2-3) on several different substrates. The influence of working pressure on the MoS3 content of the amorphous films was explored with X-ray photoelectron spectroscopy (… more
Date: August 2022
Creator: Gellerup, Branden Spencer
Partner: UNT Libraries

Investigation of the Processing-Induced Transition from Shape Memory to Strain Glass of Ni-Ti and Fe-Mn-Al-Cr-Ni Alloys

Description: In this study, we observed the effects of the processing-induced method on two different shape memory alloys (SMAs). First, we compare the transformation behavior of a martensitic NiTi SMA during thermal cycling using wide angle synchrotron radiation X-ray diffraction (WAXS). Based on the thermal cycling results, three observations about processing-induced SGAs as compared to SMAs can be seen: (1) retention of distorted austenite at high and low temperatures, (2) broadening of diffraction peaks… more
Date: December 2022
Creator: Ashmore, Bailey Nicole
Partner: UNT Libraries
open access

Investigations in the Mechanism of Carbothermal Reduction of Yttria Stabilized Zirconia for Ultra-high Temperature Ceramics Application and Its Influence on Yttria Contained in It

Description: Zirconium carbide (ZrC) is a high modulus ceramic with an ultra-high melting temperature and, consequently, is capable of withstanding extreme environments. Carbon-carbon composites (CCCs) are important structural materials in future hypersonic aircraft; however, these materials may be susceptible to degradation when exposed to elevated temperatures during extreme velocities. At speeds of exceeding Mach 5, intense heating of leading edges of the aircraft triggers rapid oxidation of carbon in C… more
Date: May 2014
Creator: Sondhi, Anchal
Partner: UNT Libraries
open access

Laser Additive Manufacturing of Magnetic Materials

Description: A matrix of variably processed Fe-30at%Ni was deposited with variations in laser travel speeds as well and laser powers. A complete shift in phase stability occurred as a function of varying laser travel speed. At slow travel speeds, the microstructure was dominated by a columnar fcc phase. Intermediate travel speeds yielded a mixed microstructure comprised of both the columnar fcc and a martensite-like bcc phase. At the fastest travel speed, the microstructure was dominated by the bcc phase. T… more
Date: August 2017
Creator: Mikler, Calvin V.
Partner: UNT Libraries
open access

Laser Deposition, Heat-treatment, and Characterization of the Binary Ti-xmn System

Description: The present research seeks to characterization of an additively manufactured and heat-treated Ti-xMn gradient alloy, a binary system that has largely been unexplored. In order to rapidly assess this binary system, compositionally graded Ti-xMn (0<x<15 wt%) specimens were fabricated using the LENS (Laser Engineered Net Shaping) and were subsequently heat-treated and characterized using a wide range of techniques. Microstructural changes with respect to the change in thermal treatments, hardness … more
Date: August 2013
Creator: Avasarala, Chandana
Partner: UNT Libraries
open access

Laser Modified Alumina: a Computational and Experimental Analysis

Description: Laser surface modification involves rapid melting and solidification is an elegant technique used for locally tailoring the surface morphology of alumina in order to enhance its abrasive characteristics. COMSOL Multiphysics® based heat transfer modeling and experimental approaches were designed and used in this study for single and multiple laser tracks to achieve densely-packed multi-facet grains via temperature history, cooling rate, solidification, scanning electron micrographs, and wear rat… more
Date: December 2012
Creator: Moncayo, Marco Antonio
Partner: UNT Libraries
open access

Laser Powder Bed Fusion of H13 Tool Steel: Experiments, Process Optimization and Microstructural Characterization

Description: This work focused on laser powder bed fusion (LPBF) of H13 tool steel to examine microstructure and melt pool morphology. Experiments were conducted with varying laser power (P) in the range of 90-180 W and scan speed (v) in the range of 500-1000 mm/s. layer thickness (l) and hatch spacing (h) were kept constant. Volumetric energy density (γ) was calculated using the above process parameters. In order to find a relation between the recorded density and top surface roughness with changing proces… more
Date: May 2023
Creator: Channa Reddy, Sumanth Kumar Reddy
Partner: UNT Libraries
Back to Top of Screen