You limited your search to:

  Partner: UNT Libraries
 Department: Department of Materials Science and Engineering
 Collection: UNT Theses and Dissertations
A magnetorheological study of single-walled and multi-walled carbon nanotube dispersions in mineral oil and epoxy resin.

A magnetorheological study of single-walled and multi-walled carbon nanotube dispersions in mineral oil and epoxy resin.

Date: May 2005
Creator: Yang, Zhengtao
Description: Single wall carbon nanotubes (SWNTs) and multi-walled carbon nanotubes (MWNTs) were dispersed in mineral oil and epoxy resin. The magnetorheological properties of these dispersions were studied using a parallel plate rheometer. Strain sweeps, frequency sweeps, magneto sweeps and steady shear tests were conducted in various magnetic fields. G', G", h* and ty increased with increasing magnetic field, which was partially attributed to the increasing degree of the alignment of nanotubes in a stronger magnetic field. The SWNT/mo dispersions exhibited more pronounced magnetic field dependence than SWNT/ep and MWNT/mo counterparts due to their much lower viscosity. The alignment of SWNTs in mineral oil increased with rising nanotube concentration up to 2.5vol% but were significantly restricted at 6.41vol% due to nanotube flocculation.
Contributing Partner: UNT Libraries
Maleic anhydride grafted polypropylene coatings on steel: Adhesion and wear.

Maleic anhydride grafted polypropylene coatings on steel: Adhesion and wear.

Date: May 2010
Creator: Mahendrakar, Sridhar
Description: Polymeric coatings are being used in a growing number of applications, contributing to protection against weather conditions and localized corrosion, reducing the friction and erosion wear on the substrate. In this study, various polypropylene (PP) coatings were applied onto steel substrates by compression molding. Chemical modification of PP has been performed to increase its adhesion to metallic surfaces by grafting of maleic anhydride (MAH) onto PP in the presence of dicumyl peroxide (DCP). Influence of different concentrations of MAH and DCP on the properties of resulting materials have been examined. The coated steel samples are characterized by scanning electron microscopy (SEM), shear adhesion testing, FTIR and tribometry. The coatings with 3 wt. % MAH have shown the maximum adhesion strength due to maximum amount of grafting. The wear rates increased with increasing the amount of MAH due to simultaneous increase in un-reacted MAH.
Contributing Partner: UNT Libraries
Measurement of Lattice Strain and Relaxation Effects in Strained Silicon Using X-ray Diffraction and Convergent Beam Electron Diffraction

Measurement of Lattice Strain and Relaxation Effects in Strained Silicon Using X-ray Diffraction and Convergent Beam Electron Diffraction

Date: August 2007
Creator: Diercks, David Robert
Description: The semiconductor industry has decreased silicon-based device feature sizes dramatically over the last two decades for improved performance. However, current technology has approached the limit of achievable enhancement via this method. Therefore, other techniques, including introducing stress into the silicon structure, are being used to further advance device performance. While these methods produce successful results, there is not a proven reliable method for stress and strain measurements on the nanometer scale characteristic of these devices. The ability to correlate local strain values with processing parameters and device performance would allow for more rapid improvements and better process control. In this research, x-ray diffraction and convergent beam electron diffraction have been utilized to quantify the strain behavior of simple and complex strained silicon-based systems. While the stress relaxation caused by thinning of the strained structures to electron transparency complicates these measurements, it has been quantified and shows reasonable agreement with expected values. The relaxation values have been incorporated into the strain determination from relative shifts in the higher order Laue zone lines visible in convergent beam electron diffraction patterns. The local strain values determined using three incident electron beam directions with different degrees of tilt relative to the device structure have ...
Contributing Partner: UNT Libraries
Mechanics and Mechanisms of Creep and Ductile Fracture

Mechanics and Mechanisms of Creep and Ductile Fracture

Date: August 2013
Creator: Srivastava, Ankit
Description: The main aim of this dissertation is to relate measurable and hopefully controllable features of a material's microstructure to its observed failure modes to provide a basis for designing better materials. The understanding of creep in materials used at high temperatures is of prime engineering importance. Single crystal Ni-based superalloys used in turbine aerofoils of jet engines are exposed to long dwell times at very high temperatures. In contrast to current theories, creep tests on Ni-based superalloy specimens have shown size dependent creep response termed as the thickness debit effect. To investigate the mechanism of the thickness debit effect, isothermal creep tests were performed on uncoated Ni-based single crystal superalloy sheet specimens with two thicknesses and under two test conditions: a low temperature high stress condition and a high temperature low stress condition. At the high temperature, surface oxidation induced microstructural changes near the free surface forming a layered microstructure. Finite element calculations showed that this layered microstructure gave rise to local changes in the stress state. The specimens also contained nonuniform distribution of initial voids formed during the solidification and homogenization processes. The experiments showed that porosity evolution could play a significant role in the thickness debit effect. This ...
Contributing Partner: UNT Libraries
Mechanisms of Ordered Gamma Prime Precipitation in Nickel Base Superalloys

Mechanisms of Ordered Gamma Prime Precipitation in Nickel Base Superalloys

Date: May 2011
Creator: Singh, Antariksh Rao Pratap
Description: Commercial superalloys like Rene88DT are used in high temperature applications like turbine disk in aircraft jet engines due to their excellent high temperature properties, including strength, ductility, improved fracture toughness, fatigue resistance, enhanced creep and oxidation resistance. Typically this alloy's microstructure has L12-ordered precipitates dispersed in disordered face-centered cubic γ matrix. A typical industrially relevant heat-treatment often leads to the formation of multiple size ranges of γ¢ precipitates presumably arising from multiple nucleation bursts during the continuous cooling process. The morphology and distribution of these γ′ precipitates inside γ matrix influences the mechanical properties of these materials. Therefore, the study of thermodynamic and kinetic factors influencing the evolution of these precipitates and subsequent effects is both relevant for commercial applications as well as for a fundamental understanding of the underlying phase transformations. The present research is primarily focused on understanding the mechanism of formation of different generations of γ′ precipitates during continuous cooling by coupling scanning electron microscopy (SEM), energy filtered TEM and atom probe tomography (APT). In addition, the phase transformations leading to nucleation of γ′ phase has been a topic of controversy for decades. The present work, for the first time, gives a novel insight into the mechanism ...
Contributing Partner: UNT Libraries
Micro and nano composites composed of a polymer matrix and a metal disperse phase.

Micro and nano composites composed of a polymer matrix and a metal disperse phase.

Date: December 2007
Creator: Olea Mejia, Oscar Fernando
Description: Low density polyethylene (LDPE) and Hytrel (a thermoplastic elastomer) were used as polymeric matrices in polymer + metal composites. The concentration of micrometric (Al, Ag and Ni) as well as nanometric particles (Al and Ag) was varied from 0 to 10 %. Composites were prepared by blending followed by injection molding. The resulting samples were analyzed by scanning electron microscopy (SEM) and focused ion beam (FIB) in order to determine their microstructure. Certain mechanical properties of the composites were also determined. Static and dynamic friction was measured. The scratch resistance of the specimens was determined. A study of the wear mechanisms in the samples was performed. The Al micro- and nanoparticles as well as Ni microparticles are well dispersed throughout the material while Ag micro and nanoparticles tend to form agglomerates. Generally the presence of microcomposites affects negatively the mechanical properties. For the nanoparticles, composites with a higher elastic modulus than that of the neat materials are achievable. For both micro- and nanocomposites it is feasible to lower the friction values with respective to the neat polymers. The addition of metal particles to polymers also improves the scratch resistance of the composites, particularly so for microcomposites. The inclusion of Ag ...
Contributing Partner: UNT Libraries
Microstructural Phase Evolution In Laser Deposited Compositionally Graded Titanium-Chromium Alloys

Microstructural Phase Evolution In Laser Deposited Compositionally Graded Titanium-Chromium Alloys

Access: Use of this item is restricted to the UNT Community.
Date: May 2016
Creator: Thomas, Jonova
Description: A compositionally graded Ti-xCr (10≤x≤30 wt%) alloy has been fabricated using Laser Engineered Net Shaping (LENSTM) to study the microstructural phase evolution along a compositional gradient in both as-deposited and heat treated conditions (1000°C followed by furnace cooling or air cooling). The alloys were characterized by SEM BSE imaging, XRD, EBSD, TEM and micro-hardness measurements to determine processing-structure-property relations. For the as-deposited alloy, α-Ti, β-Ti, and TiCr2 (C15 Laves) phases exist in varying phase fractions, which were influential in determining hardness values. With the furnace cooled alloy, there was more homogeneous nucleation of α phase throughout the sample with a larger phase fraction of TiCr2 resulting in increased hardness values. When compared to the air cooled alloy, there was absence of wide scale nucleation of α phase and formation of ω phase within the β phase due to the quicker cooling from elevated temperature. At lower concentrations of Cr, the kinetics resulted in a diffusionless phase transformation of ω phase with increased hardness and a lower phase fraction of TiCr2. In contrast at higher Cr concentrations, α phase separation reaction occurs where the β phase is spinodally decomposed to Cr solute-lean β1 and solute-rich β2 resulting in reduced hardness.
Contributing Partner: UNT Libraries
Microstructure Evolution in Laser Deposited Nickel-Titanium-Carbon in situ Metal Matrix Composite

Microstructure Evolution in Laser Deposited Nickel-Titanium-Carbon in situ Metal Matrix Composite

Date: December 2010
Creator: Gopagoni, Sundeep
Description: Ni/TiC metal matrix composites have been processed using the laser engineered net shaping (LENS) process. As nickel does not form an equilibrium carbide phase, addition of a strong carbide former in the form of titanium reinforces the nickel matrix resulting in a promising hybrid material for both surface engineering as well as high temperature structural applications. Changing the relative amounts of titanium and carbon in the nickel matrix, relatively low volume fraction of refined homogeneously distributed carbide precipitates, formation of in-situ carbide precipitates and the microstructural changes are investigated. The composites have been characterized in detail using x-ray diffraction, scanning electron microscopy (including energy dispersive spectroscopy (XEDS) mapping and electron backscatter diffraction (EBSD)), Auger electron spectroscopy, and transmission (including high resolution) electron microscopy. Both primary and eutectic titanium carbides, observed in this composite, exhibited the fcc-TiC structure (NaCl-type). Details of the orientation relationship between Ni and TiC have been studied using SEM-EBSD and high resolution TEM. The results of micro-hardness and tribology tests indicate that these composites have a relatively high hardness and a steady-state friction coefficient of ~0.5, both of which are improvements in comparison to LENS deposited pure Ni.
Contributing Partner: UNT Libraries
Mist and Microstructure Characterization in End Milling Aisi 1018 Steel Using Microlubrication

Mist and Microstructure Characterization in End Milling Aisi 1018 Steel Using Microlubrication

Date: August 2013
Creator: Shaikh, Vasim
Description: Flood cooling is primarily used to cool and lubricate the cutting tool and workpiece interface during a machining process. But the adverse health effects caused by the use of flood coolants are drawing manufacturers' attention to develop methods for controlling occupational exposure to cutting fluids. Microlubrication serves as an alternative to flood cooling by reducing the volume of cutting fluid used in the machining process. Microlubrication minimizes the exposure of metal working fluids to the machining operators leading to an economical, safer and healthy workplace environment. In this dissertation, a vegetable based lubricant is used to conduct mist, microstructure and wear analyses during end milling AISI 1018 steel using microlubrication. A two-flute solid carbide cutting tool was used with varying cutting speed and feed rate levels with a constant depth of cut. A full factorial experiment with Multivariate Analysis of Variance (MANOVA) was conducted and regression models were generated along with parameter optimization for the flank wear, aerosol mass concentration and the aerosol particle size. MANOVA indicated that the speed and feed variables main effects are significant, but the interaction of (speed*feed) was not significant at 95% confidence level. The model was able to predict 69.44%, 68.06% and 42.90% of ...
Contributing Partner: UNT Libraries
Modifications of epoxy resins for improved mechanical and tribological performances and their effects on curing kinetics.

Modifications of epoxy resins for improved mechanical and tribological performances and their effects on curing kinetics.

Date: May 2008
Creator: Chonkaew, Wunpen
Description: A commercial epoxy, diglycidyl ether of bisphenol-A, was modified by two different routes. One was the addition of silica to produce epoxy composites. Three different silane coupling agents, glycidyloxypropyl trimethoxy silane (GPS), -methacryloxypropyl trimethoxy silane (MAMS) and 3-mercaptopropyltriethoxy silane (MPS), were used as silica-surface modifiers. The effects of silica content, together with the effects of chemical surface treatment of silica, were studied. The results indicate that epoxy composites with silica exhibit mechanical and tribological properties as well as curing kinetics different than the pure epoxy. The optimum silica content for improved mechanical and tribological properties (low friction coefficient and wear rate) was different for each type of silane coupling agent. An unequivocal correlation between good mechanical and improved tribological properties was not found. Activation energy of overall reactions was affected by the addition of silica modified with MAMS and MPS, but not with GPS. The second route was modification by fluorination. A new fluoro-epoxy oligomer was synthesized and incorporated into a commercial epoxy by a conventional blending method. The oligomer functioned as a catalyst in the curing of epoxy and polyamine. Thermal stability of the blends decreased slightly at a high oligomer content. Higher wear resistance, lower friction coefficient and ...
Contributing Partner: UNT Libraries
Modified epoxy coatings on mild steel: A study of tribology and surface energy.

Modified epoxy coatings on mild steel: A study of tribology and surface energy.

Date: August 2009
Creator: Dutta, Madhuri
Description: A commercial epoxy was modified by adding fluorinated poly (aryl ether ketone) and in turn metal micro powders (Ni, Al, Zn, and Ag) and coated on mild steel. Two curing agents were used; triethylenetetramine (curing temperatures: 30 oC and 70 oC) and hexamethylenediamine (curing temperature: 80 oC). Variation in tribological properties (dynamic friction and wear) and surface energies with varying metal powders and curing agents was evaluated. When cured at 30 oC, friction and wear decreased significantly due to phase separation reaction being favored but increased when cured at 70 oC and 80 oC due to cross linking reaction being favored. There was a significant decrease in surface energies with the addition of modifiers.
Contributing Partner: UNT Libraries
Molecular Dynamics Simulations of the Structures of Europium Containing Silicate and Cerium Containing Aluminophosphate Glasses

Molecular Dynamics Simulations of the Structures of Europium Containing Silicate and Cerium Containing Aluminophosphate Glasses

Date: August 2012
Creator: Kokou, Leopold Lambert Yaovi
Description: Rare earth ion doped glasses find applications in optical and photonic devices such as optical windows, laser, and optical amplifiers, and as model systems for immobilization of nuclear waste. Macroscopic properties of these materials, such as luminescence efficiency and phase stability, depend strongly on the atomic structure of these glasses. In this thesis, I have studied the atomic level structure of rare earth doped silicate and aluminophosphate glasses by using molecular dynamics simulations. Extensive comparisons with experimental diffraction and NMR data were made to validate the structure models. Insights on the local environments of rare earth ions and their clustering behaviors and their dependence on glass compositions have been obtained. In this thesis, MD simulations have been used to investigate the structure of Eu2O3-doped silica and sodium silicate glasses to understand the glass composition effect on the rare earth ions local environment and their clustering behaviors in the glass matrix, for compositions with low rare earth oxide concentration (~1mol%). It was found that Eu–O distances and coordination numbers were different in silica (2.19-2.22 Å and 4.6-4.8) from those in sodium silicate (2.32 Å and 5.8). High tendencies of Eu clustering and short Eu-Eu distances in the range 3.40-3.90 Å were ...
Contributing Partner: UNT Libraries
Morphological properties of poly (ethylene terephthalate) (PET) nanocomposites in relation to fracture toughness.

Morphological properties of poly (ethylene terephthalate) (PET) nanocomposites in relation to fracture toughness.

Date: August 2005
Creator: Pendse, Siddhi
Description: The effect of incorporation of montmorillonite layered silicate (MLS) on poly (ethylene terephthalate) (PET) matrix was investigated. MLS was added in varying concentration of 1 to 5 weight percent in the PET matrix. DSC and polarized optical microscopy were used to determine the crystallization effects of MLS addition. Non isothermal crystallization kinetics showed that the melting temperature and crystallization temperature decrease as the MLS percent increases. This delayed crystallization along with the irregular spherulitic shape indicates hindered crystallization in the presence of MLS platelets. The influence of this morphology was related with the fracture toughness of PET nanocomposites using essential work of fracture coupled with the infra red (IR) thermography. Both the essential as well as non essential work of fracture decreased on addition of MLS with nanocomposite showing reduced toughness.
Contributing Partner: UNT Libraries
Nano-crystallization Inhibition in 5 Nm Ru Film Diffusion Barriers for Advanced Cu-interconnect

Nano-crystallization Inhibition in 5 Nm Ru Film Diffusion Barriers for Advanced Cu-interconnect

Date: December 2013
Creator: Sharma, Bed P.
Description: As the semiconductor industries are moving beyond 22 nm node technology, the currently used stacked Ta/TaN diffusion barrier including a copper seed will be unable to fulfill the requirements for the future technologies. Due to its low resistivity and ability to perform galvanic copper fill without a seed layer, ruthenium (Ru) has emerged as a potential copper diffusion barrier. However, its crystallization and columnar nanostructure have been the main cause of barrier failures even at low processing temperatures (300 oC -350 oC). In this study, we have proposed and evaluated three different strategies to improve the performance of the ultrathin Ru film as a diffusion barrier for copper. The first study focused on shallow surface plasma irradiation/amorphization and nitridation of 5 nm Ru films. Systematic studies of amorphization and nitrogen incorporation versus sample bias were performed. XPS, XRD and RBS were used to determine the physico-chemical, crystallization and barrier efficiency of the plasma modified Ru barrier. The nitrogen plasma surface irradiation of Ru films at substrate bias voltage of -350 V showed an improved barrier performance up to 400 oC annealing temperatures. The barrier barely started failing at 450 oC due mainly to nitrogen instability. The second study involved only ...
Contributing Partner: UNT Libraries
Nanohybrids Based on Solid and Foam Polyurethanes

Nanohybrids Based on Solid and Foam Polyurethanes

Date: May 2015
Creator: Bo, Chong
Description: Polymer nanocomposites are a going part of Materials Science and Engineering. These new composite materials exhibit dimensional and thermal stability of inorganic materials and toughness and dielectric properties of polymers. Development of nanocomposites become an important approach to create high-performance composite materials. In this study silica, fly ash, silica nanotubes and carbon black particles have been added to modify polyurethane foam and thermoplastic polyurethanes. It has been found that the addition of silica can diminish the size of foam bubbles, resulting in an increased stiffness of the material, increase of the compressive strength, and greater resistance to deformation. However, the uniformity of bubbles is reduced, resulting in increased friction of the material. Fly ash added to the foam can make bubbles smaller and improve uniformity of cells. Therefore, the material stiffness and compressive strength, resistance to deformation, and has little impact on the dynamic friction of the material. Adding nanotubes make bubble size unequal, and the arrangement of the bubble uneven, resulting in decreased strength of the material, while the friction increases. After the addition of carbon black to the polyurethane foam, due to the special surface structure of the carbon black, the foam generates more bubbles during the foaming ...
Contributing Partner: UNT Libraries
Orientation, Microstructure and Pile-Up Effects on Nanoindentation Measurements of FCC and BCC Metals

Orientation, Microstructure and Pile-Up Effects on Nanoindentation Measurements of FCC and BCC Metals

Date: May 2008
Creator: Srivastava, Ashish Kumar
Description: This study deals with crystal orientation effect along with the effects of microstructure on the pile-ups which affect the nanoindentation measurements. Two metal classes, face centered cubic (FCC) and body centered cubic (BCC, are dealt with in the present study. The objective of this study was to find out the degree of inaccuracy induced in nanoindentation measurements by the inherent pile-ups and sink-ins. Also, it was the intention to find out how the formation of pile-ups is dependant upon the crystal structure and orientation of the plane of indentation. Nanoindentation, Nanovision, scanning electron microscopy, electron dispersive spectroscopy and electron backscattered diffraction techniques were used to determine the sample composition and crystal orientation. Surface topographical features like indentation pile-ups and sink-ins were measured and the effect of crystal orientation on them was studied. The results show that pile-up formation is not a random phenomenon, but is quite characteristic of the material. It depends on the type of stress imposed by a specific indenter, the depth of penetration, the microstructure and orientation of the plane of indentation. Pile-ups are formed along specific directions on a plane and this formation as well as the pile-up height and the contact radii with the indenter ...
Contributing Partner: UNT Libraries
Phase Separation and Second Phase Precipitation in Beta Titanium Alloys

Phase Separation and Second Phase Precipitation in Beta Titanium Alloys

Date: May 2011
Creator: Devaraj, Arun
Description: The current understanding of the atomic scale phenomenon associated with the influence of beta phase instabilities on the evolution of microstructure in titanium alloys is limited due to their complex nature. Such beta phase instabilities include phase separation and precipitation of nano-scale omega and alpha phases in the beta matrix. The initial part of the present study focuses on omega precipitation within the beta matrix of model binary titanium molybdenum (Ti-Mo) alloys. Direct atomic scale observation of pre-transition omega-like embryos in quenched alloys, using aberration-corrected high resolution scanning transmission electron microscopy and atom probe tomography (APT) was compared and contrasted with the results of first principles computations performed using the Vienna ab initio simulation package (VASP) to present a novel mechanism of these special class of phase transformation. Thereafter the beta phase separation and subsequent alpha phase nucleation in a Ti-Mo-Al ternary alloy was investigated by coupling in-situ high energy synchrotron x-ray diffraction with ex-situ characterization studies performed using aberration corrected transmission electron microscopy and APT to develop a deeper understanding of the mechanism of transformation. Subsequently the formation of the omega phase in the presence of simultaneous development of compositional phase separation within the beta matrix phase of a ...
Contributing Partner: UNT Libraries
Piezoresistive Polyvinylidene Fluoride/Carbon Filled Nanocomposites

Piezoresistive Polyvinylidene Fluoride/Carbon Filled Nanocomposites

Date: May 2011
Creator: Vidhate, Shailesh
Description: This thesis examines the value of using dispersed conductive fillers as a stress/strain sensing material. The effect of the intrinsic conductivity of the filler on the ability to be effective and the influence of filler concentration on the conductivity are also examined. To meet these objectives, nanocomposites of polyvinylidene fluoride (PVDF) with carbon nanofibers (CNFs) and carbon nanotubes (CNTs) were prepared by melt-blending using a twin screw extruder. Since PVDF has a potential to be piezoresistive based on the type of crystalline phase, the effect of CNFs on PVDF crystallinity, crystalline phase, quasi static and dynamic mechanical property was studied concurrently with piezoresponse. Three time dependencies were examined for PVDF/CNTs nanocomposites: quasi-static, transient and cyclic fatigue. The transient response of the strain with time showed viscoelastic behavior and was modeled by the 4-element Burger model. Under quasi-static loading the resistance showed negative pressure coefficient below yield but changed to a positive pressure coefficient after yield. Under cyclic load, the stress-time and resistance-time were synchronous but the resistance peak value decreased with increasing cycles, which was attributed to charge storage in the nanocomposite. The outcomes of this thesis indicate that a new piezoresponsive system based on filled polymers is a viable ...
Contributing Partner: UNT Libraries
Plasma Interactions on Organosilicate Glass Dielectric Films and Emerging Amorphous Materials- Approach to Pore Sealing and Chemical Modifications

Plasma Interactions on Organosilicate Glass Dielectric Films and Emerging Amorphous Materials- Approach to Pore Sealing and Chemical Modifications

Date: May 2015
Creator: Kazi, Haseeb
Description: In-situ x-ray photoemission (XPS) and ex-situ FTIR studies of nanoporous organosilicate glass (OSG) films point to the separate roles of radicals vs. VUV photons in the carbon abstraction. The studies indicate that reaction with O2 in presence of VUV photons (~123 nm) result in significant carbon abstraction within the bulk and that the kinetics of this process is diffusion-limited. In contrast, OSG exposed to atomic O (no VUV) results in Si-C bond scission and Si-O bond formation, but this process is self-limiting after formation of ~1 nm thick SiO2 surface layer that inhibits further diffusion. Therefore, the diffusion-dominated kinetics of carbon abstraction observed for OSG exposed to O2 plasma is definitively attributed to the diffusion of O2 down OSG nanopores, reacting at photo-activated sites, rather than to the diffusion of atomic O. Pretreatment of OSG by 900 eV Ar+ ion bombardment also results in formation of 1 nm thick SiO2-like surface overlayer that inhibits O2 diffusion, inhibiting VUV+O2 and O2 plasma-induced reactions, and that the effectiveness of this treatment increases with ion kinetic energy. On the contrary, organosilicate glass (OSG) films with backbone carbon (-Si-R-Si-) exhibit significantly enhanced resistance to carbon loss upon exposure to O2 plasma, radicals and VUV+O2 ...
Contributing Partner: UNT Libraries
Polyethylene-layered double hydroxide and montmorillonite nanocomposites: Thermal, mechanical and flame retardance properties.

Polyethylene-layered double hydroxide and montmorillonite nanocomposites: Thermal, mechanical and flame retardance properties.

Date: May 2008
Creator: Kosuri, Divya
Description: The effect of incorporation two clays; layered double hydroxides (LDH) and montmorillonite layered silicates (MLS) in linear low density polyethylene (PE) matrix was investigated. MLS and LDH were added of 5, 15, 30 and 60 weight percent in the PE and compounded using a Brabender. Ground pellets were subsequently compression molded. Dispersion of the clays was analyzed using optical microscopy, SEM and XRD. Both the layered clays were immiscible with the PE matrix and agglomerates formed with increased clay concentration. The thermal properties were studied by differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA). Both clays served as nucleation enhancers increasing recrystallization temperatures in the composites. Flame retarding properties were determined by using the flammability HVUL-94 system. LDH indicated better flame retarding properties than MLS for PE. The char structure was analyzed by environmental scanning electron microscopy. Mechanical properties were studied by tensile testing and Vickers microhardness testing apparatus.
Contributing Partner: UNT Libraries
Processing and Characterization of Nickel-Carbon Base Metal Matrix Composites

Processing and Characterization of Nickel-Carbon Base Metal Matrix Composites

Date: May 2014
Creator: Borkar, Tushar Murlidhar
Description: Carbon nanotubes (CNTs) and graphene nanoplatelets (GNPs) are attractive reinforcements for lightweight and high strength metal matrix composites due to their excellent mechanical and physical properties. The present work is an attempt towards investigating the effect of CNT and GNP reinforcements on the mechanical properties of nickel matrix composites. The CNT/Ni (dry milled) nanocomposites exhibiting a tensile yield strength of 350 MPa (about two times that of SPS processed monolithic nickel ~ 160 MPa) and an elongation to failure ~ 30%. In contrast, CNT/Ni (molecular level mixed) exhibited substantially higher tensile yield strength (~ 690 MPa) but limited ductility with an elongation to failure ~ 8%. The Ni-1vol%GNP (dry milled) nanocomposite exhibited the best balance of properties in terms of strength and ductility. The enhancement in the tensile strength (i.e. 370 MPa) and substantial ductility (~40%) of Ni-1vol%GNP nanocomposites was achieved due to the combined effects of grain refinement, homogeneous dispersion of GNPs in the nickel matrix, and well-bonded Ni-GNP interface, which effectively transfers stress across metal-GNP interface during tensile deformation. A second emphasis of this work was on the detailed 3D microstructural characterization of a new class of Ni-Ti-C based metal matrix composites, developed using the laser engineered net ...
Contributing Partner: UNT Libraries
Processing and Characterization of Polycarbonate Foams with Supercritical Co2 and 5-Phenyl-1h-Tetrazole

Processing and Characterization of Polycarbonate Foams with Supercritical Co2 and 5-Phenyl-1h-Tetrazole

Date: May 2015
Creator: Cloarec, Thomas
Description: Since their discovery in the 1930s, polymeric foams have been widely used in the industry for a variety of applications such as acoustical and thermal insulation, filters, absorbents etc. The reason for this ascending trend can be attributed to factors such as cost, ease of processing and a high strength to weight ratio compared to non-foamed polymers. The purpose of this project was to develop an “indestructible” material made of polycarbonate (PC) for industrial applications. Due to the high price of polycarbonate, two foaming methods were investigated to reduce the amount of material used. Samples were foamed physically in supercritical CO2 or chemically with 5-phenyl-1H-tetrazole. After thermal characterization of the foams in differential scanning calorimetry (DSC), we saw that none of the foaming methods had an influence on the glass transition of polycarbonate. Micrographs taken in scanning electron microscopy (SEM) showed that foams obtained in physical and chemical foaming had different structures. Indeed, samples foamed in supercritical CO2 exhibited a microcellular opened-cell structure with a high cell density and a homogeneous cell distribution. On the other hand, samples foamed with 5-phenyl-1H-tetrazole had a macrocellular closed-cell structure with a much smaller cell density and a random cell distribution. Compression testing showed ...
Contributing Partner: UNT Libraries
Processing, Structure, and Tribological Property Interrelationships in Sputtered Nanocrystalline ZnO Coatings

Processing, Structure, and Tribological Property Interrelationships in Sputtered Nanocrystalline ZnO Coatings

Date: August 2009
Creator: Tu, Wei-Lun
Description: Solid lubricant coatings with controlled microstructures are good candidates in providing lubricity in moving mechanical assembly applications, such as orthopedics and bearing steels. Nanocrystalline ZnO coatings with a layered wurtzite crystal structure have the potential to function as a lubricious material by its defective structure which is controlled by sputter deposition. The interrelationships between sputtered ZnO, its nanocrystalline structure and its lubricity will be discussed in this thesis. The nanocrystalline ZnO coatings were deposited on silicon substrates and Ti alloys by RF magnetron sputtering with different substrate adhesion layers, direct current biases, and temperatures. X-ray diffraction identified that the ZnO (0002) preferred orientation was necessary to achieve low sliding friction and wear along with substrate biasing. In addition, other analyses such as scanning electron microscopy (SEM), transmission electron microscopy (TEM), and selected area electron diffraction (SAED) were utilized to study the solid lubrication mechanisms responsible for low friction and wear.
Contributing Partner: UNT Libraries
Processing, Structure and Tribological Property Relations of Ternary Zn-ti-o and Quaternary Zn-ti-zr-o Nanocrystalline Coatings

Processing, Structure and Tribological Property Relations of Ternary Zn-ti-o and Quaternary Zn-ti-zr-o Nanocrystalline Coatings

Date: August 2014
Creator: Ageh, Victor
Description: Conventional liquid lubricants are faced with limitations under extreme cyclic operating conditions, such as in applications that require lubrication when changing from atmospheric pressure to ultrahigh vacuum and ambient air to dry nitrogen (e.g., satellite components), and room to elevated (>500°C) temperatures (e.g., aerospace bearings). Alternatively, solid lubricant coatings can be used in conditions where synthetic liquid lubricants and greases are not applicable; however, individual solid lubricant phases usually perform best only for a limited range of operating conditions. Therefore, solid lubricants that can adequately perform over a wider range of environmental conditions are needed, especially during thermal cycling with temperatures exceeding 500°C. One potential material class investigated in this dissertation is lubricious oxides, because unlike other solid lubricant coatings they are typically thermodynamically stable in air and at elevated temperatures. While past studies have been focused on binary metal oxide coatings, such as ZnO, there have been very few ternary oxide and no reported quaternary oxide investigations. The premise behind the addition of the third and fourth refractory metals Ti and Zr is to increase the number of hard and wear resistant phases while maintaining solid lubrication with ZnO. Therefore, the major focus of this dissertation is to investigate ...
Contributing Partner: UNT Libraries