Search Results

open access

An Assessment of Uncommon Titanium Binary Systems: Ti-Zn, Ti-Cu, and Ti-Sb

Description: The current study focuses on phase stability and evolution in the titanium-zinc titanium-copper and titanium-antimony systems. The study utilized the Laser Engineering Net Shaping (LENS™) processing technique to deposit compositionally graded samples of three binary system in order to allow the assessment of phase stability and evolution as a function of composition and temperature the material is subjected to. Through LENS™ processing it was possible to create graded samples from Ti-xSb (up … more
Date: May 2015
Creator: Brice, David
Partner: UNT Libraries
open access

Atomistic Computer Simulations of Diffusion Mechanisms in Lithium Lanthanum Titanate Solid State Electrolytes for Lithium Ion Batteries

Description: Solid state lithium ion electrolytes are important to the development of next generation safer and high power density lithium ion batteries. Perovskite-structured LLT is a promising solid electrolyte with high lithium ion conductivity. LLT also serves as a good model system to understand lithium ion diffusion behaviors in solids. In this thesis, molecular dynamics and related atomistic computer simulations were used to study the diffusion behavior and diffusion mechanism in bulk crystal and gra… more
Date: August 2014
Creator: Chen, Chao-Hsu
Partner: UNT Libraries
open access

Atomistic Simulations of Deformation Mechanisms in Ultra-Light Weight Mg-Li Alloys

Description: Mg alloys have spurred a renewed academic and industrial interest because of their ultra-light-weight and high specific strength properties. Hexagonal close packed Mg has low deformability and a high plastic anisotropy between basal and non-basal slip systems at room temperature. Alloying with Li and other elements is believed to counter this deficiency by activating non-basal slip by reducing their nucleation stress. In this work I study how Li addition affects deformation mechanisms in Mg usi… more
Date: May 2015
Creator: Karewar, Shivraj
Partner: UNT Libraries
open access

Atomistic Studies of Point Defect Migration Rates in the Iron-Chromium System

Description: Generation and migration of helium and other point defects under irradiation causes ferritic steels based on the Fe-Cr system to age and fail. This is motivation to study point defect migration and the He equation of state using atomistic simulations due to the steels' use in future reactors. A new potential for the Fe-Cr-He system developed by collaborators at the Lawrence Livermore National Laboratory was validated using published experimental data. The results for the He equation of state ag… more
Date: August 2010
Creator: Hetherly, Jeffery
Partner: UNT Libraries

Barrier and Long Term Creep Properties of Polymer Nanocomposites.

Description: The barrier properties and long term strength retention of polymers are of significant importance in a number of applications. Enhanced lifetime food packaging, substrates for OLED based flexible displays and long duration scientific balloons are among them. Higher material requirements in these applications drive the need for an accurate measurement system. Therefore, a new system was engineered with enhanced sensitivity and accuracy. Permeability of polymers is affected by permeant solubility… more
Access: Restricted to the UNT Community Members at a UNT Libraries Location.
Date: December 2004
Creator: Ranade, Ajit
Partner: UNT Libraries

Bio-Inspired Material Surfaces with Self-cleaning, Micromanipulation and Water Collection

Description: Geckos are famous for the skill of switchable adhesion that they use to stick on various surface while keep their fingers super clean. In the dissertation, a unique mechanism was discovered to explain gecko self-cleaning phenomena. Using atomic force microscopy (AFM), we managed to compare the microparticle-substrate adhesion and the microparticle-seta adhesion with a single seta bonded to the AFM cantilever. A dynamic effect was approved that high pulling-off speed could increase the micropart… more
Access: Restricted to UNT Community Members. Login required if off-campus.
Date: May 2019
Creator: Wan, Yiyang
Partner: UNT Libraries
open access

Biocompatible Hybrid Nanomaterials Involving Polymers and Hydrogels Interfaced with Phosphorescent Complexes and Toxin-Free Metallic Nanoparticles for Biomedical Applications

Description: The major topics discussed are all relevant to interfacing brightly phosphorescent and non-luminescent coinage metal complexes of [Ag(I) and Au(I)] with biopolymers and thermoresponsive gels for making hybrid nanomaterials with an explanation on syntheses, characterization and their significance in biomedical fields. Experimental results and ongoing work on determining outreaching consequences of these hybrid nanomaterials for various biomedical applications like cancer therapy, bio-imaging and… more
Date: August 2011
Creator: Marpu, Sreekar B.
Partner: UNT Libraries
open access

Biodegradable Poly(hydroxy Butyrate-co-valerate) Nanocomposites And Blends With Poly(butylene Adipate-co-terephthalate) For Sensor Applications

Description: The utilization of biodegradable polymers is critical for developing “cradle to cradle” mindset with ecological, social and economic consequences. Poly(hydroxy butyrate-co-valerate) (PHBV) shows significant potential for many applications with a polypropylene equivalent mechanical performance. However, it has limitations including high crystallinity, brittleness, small processing window, etc. which need to be overcome before converting them into useful products. Further the development of biode… more
Date: December 2011
Creator: Vidhate, Shailesh
Partner: UNT Libraries
open access

Bioresorbable Polymer Blend Scaffold for Tissue Engineering

Description: Tissue engineering merges the disciplines of study like cell biology, materials science, engineering and surgery to enable growth of new living tissues on scaffolding constructed from implanted polymeric materials. One of the most important aspects of tissue engineering related to material science is design of the polymer scaffolds. The polymer scaffolds needs to have some specific mechanical strength over certain period of time. In this work bioresorbable aliphatic polymers (PCL and PLLA) were… more
Date: May 2011
Creator: Manandhar, Sandeep
Partner: UNT Libraries
open access

Bulk and Interfacial Effects on Density in Polymer Nanocomposites

Description: The barrier properties of polymers are a significant factor in determining the shelf or device lifetime in polymer packaging. Nanocomposites developed from the dispersion of nanometer thick platelets into a host polymer matrix have shown much promise. The magnitude of the benefit on permeability has been different depending on the polymer investigated or the degree of dispersion of the platelet in the polymer. In this dissertation, the effect of density changes in the bulk and at the polymer-pl… more
Date: May 2007
Creator: Sahu, Laxmi Kumari
Partner: UNT Libraries

Carbon Nanotubes and Molybdenum Disulfide Protected Electrodes for High Performance Lithium-Sulfur Battery Applications

Description: Lithium-sulfur (Li-S) batteries are faced with practical drawbacks of poor cycle life and low charge efficiency which hinder their advancements. Those drawbacks are primarily caused by the intrinsic issues of the cathodes (sulfur) and the anodes (Li metal). In attempt to resolve the issues found on the cathodes, this work discusses the method to prepare a binder-free three-dimensional carbon nanotubes-sulfur (3D CNTs-S) composite cathode by a facile and a scalable approach. Here, the 3D structu… more
Access: Restricted to UNT Community Members. Login required if off-campus.
Date: August 2019
Creator: Cha, Eunho
Partner: UNT Libraries
open access

Carrier Mobility, Charge Trapping Effects on the Efficiency of Heavily Doped Organic Light-Emitting Diodes, and EU(lll) Based Red OLEDs

Description: Transient electroluminescence (EL) was used to measure the onset of emission delay in OLEDs based on transition metal, phosphorescent bis[3,5-bis(2-pyridyl)-1,2,4-triazolato] platinum(ΙΙ) and rare earth, phosphorescent Eu(hfa)3 with 4'-(p-tolyl)-2,2":6',2" terpyridine (ttrpy) doped into 4,4'-bis(carbazol-9-yl) triphenylamine (CBP), from which the carrier mobility was determined. For the Pt(ptp)2 doped CBP films in OLEDs with the structure: ITO/NPB (40nm)/mcp (10nm)/65% Pt(ptp)2:CBP (2… more
Date: August 2010
Creator: Lin, Ming-Te
Partner: UNT Libraries
open access

Catalytic Properties and Mechanical Behavior of Metallic Glass Powders

Description: Lack of crystalline order and microstructural features such as grain/grain-boundary in metallic glasses results in a suite of remarkable attributes including very high strength, close to theoretical elasticity, high corrosion and wear resistance, and soft magnetic properties. By altering the morphology and tuning of composition, MGs may be transformed into high-performance catalytic materials. In this study, the catalytic properties of metallic glass powders were demonstrated in dissociating to… more
Date: May 2017
Creator: Garrison, Seth
Partner: UNT Libraries
open access

Characterization and Chemical Analysis of Fundamental Components for Lead Acid Batteries

Description: Although markets for alternative batteries, such as Li-ion, are growing, Pb-alloy batteries still dominate the market due to their low cost and good functionality. Even though these Pb-alloy batteries have been around since their discovery in 1859, little research involving advanced characterization techniques, such as synchrotron radiation X-ray diffraction (SR-XRD) and transmission electron diffraction (TEM) have been performed on Pb-alloys and sulfation, a failure mode in lead acid batteries… more
Date: May 2022
Creator: Wall, Michael T
Partner: UNT Libraries
open access

Characterization of Cure Kinetics and Physical Properties of a High Performance, Glass Fiber-Reinforced Epoxy Prepreg and a Novel Fluorine-Modified, Amine-Cured Commercial Epoxy.

Description: Kinetic equation parameters for the curing reaction of a commercial glass fiber reinforced high performance epoxy prepreg composed of the tetrafunctional epoxy tetraglycidyl 4,4-diaminodiphenyl methane (TGDDM), the tetrafunctional amine curing agent 4,4'-diaminodiphenylsulfone (DDS) and an ionic initiator/accelerator, are determined by various thermal analysis techniques and the results compared. The reaction is monitored by heat generated determined by differential scanning calorimetry (DSC) a… more
Date: December 2003
Creator: Bilyeu, Bryan
Partner: UNT Libraries
open access

Characterization of Ti-6Al-4V Produced Via Electron Beam Additive Manufacturing

Description: In recent years, additive manufacturing (AM) has become an increasingly promising method used for the production of structural metallic components. There are a number of reasons why AM methods are attractive, including the ability to produce complex geometries into a near-net shape and the rapid transition from design to production. Ti-6Al-4V is a titanium alloy frequently used in the aerospace industry which is receiving considerable attention as a good candidate for processing via electron be… more
Date: December 2015
Creator: Hayes, Brian J.
Partner: UNT Libraries
open access

Charge Interaction Effects in Epoxy with Cation Exchanged Montmorillonite Clay and Carbon Nanotubes.

Description: The influence of charge heterogeneity in nanoparticles such as montmorillonite layered silicates (MLS) and hybrid systems of MLS + carbon nanotubes was investigated in cured and uncured epoxy. Epoxy nanocomposites made with cation-exchanged montmorillonite clay were found to form agglomerates near a critical concentration. Using differential scanning calorimetry it was determined that the mixing temperature of the epoxy + MLS mixture prior to the addition of the curing agent critically influenc… more
Date: May 2005
Creator: Butzloff, Peter Robert
Partner: UNT Libraries

Charpy Impact Testing of Twinning Induced Plasticity and Transformation Induced Plasticity High Entropy Alloys

Description: High entropy alloys (HEAs) are a new class of solid solution alloys that contain multiple principal elements and possess excellent mechanical properties, from corrosion resistance to fatigue and wear resistance. Even more recently, twinning induced plasticity (TWIP) and transformation induced plasticity (TRIP) non-equiatomic high entropy alloys have been engineered, promising increased strength and ductility as compared to their equiatomic counterparts. However, impact and fracture resistance o… more
Access: Restricted to UNT Community Members. Login required if off-campus.
Date: August 2019
Creator: Zellner, Samantha R
Partner: UNT Libraries
open access

Combinatorial Assessment of the Influence of Composition and Exposure Time on the Oxidation Behavior and Concurrent Oxygen-induced Phase Transformations of Binary Ti-x Systems

Description: The relatively low oxidation resistance and subsequent surface embrittlement have often limited the use of titanium alloys in elevated temperature structural applications. Although extensive effort is spent to investigate the high temperature oxidation performance of titanium alloys, the studies are often constrained to complex technical titanium alloys and neither the mechanisms associated with evolution of the oxide scale nor the effect of oxygen ingress on the microstructure of the base meta… more
Date: May 2015
Creator: Samimi, Peyman
Partner: UNT Libraries
open access

Compostable Soy-Based Polyurethane Foam with Kenaf Core Modifiers

Description: Building waste and disposable packaging are a major component in today's landfills. Most of these are structural or thermally insulative polymer foams that do not degrade over a long period of time. Currently, there is a push to replace these foams with thermoplastic or biodegradable foams that can either be recycled or composted. We propose the use of compostable soy-based polyurethane foams (PU) with kenaf core modifiers that will offer the desired properties with the ability to choose respon… more
Date: August 2016
Creator: Hoyt, Zachary
Partner: UNT Libraries
open access

Computational Studies on Structures and Ionic Diffusion of Bioactive Glasses

Description: Bioactive glasses are a class of synthetic inorganic material that have wide orthopedics, dentistry, tissue engineering and other biomedical applications. The origin of the bioactivity is closely related to the atomic structures of these novel glass materials, which otherwise lack long range order and defies any direct experimental measurements due to their amorphous nature. The structure of bioactive glasses is thus essential for the understanding of bioactive behaviors and eventually rational… more
Date: August 2014
Creator: Xiang, Ye
Partner: UNT Libraries
open access

Computational Study of Dislocation Based Mechanisms in FCC Materials

Description: Understanding the relationships between microstructures and properties of materials is a key to developing new materials with more suitable qualities or employing the appropriate materials in special uses. In the present world of material research, the main focus is on microstructural control to cost-effectively enhance properties and meet performance specifications. This present work is directed towards improving the fundamental understanding of the microscale deformation mechanisms and mechan… more
Date: August 2014
Creator: Yellakara, Ranga Nikhil
Partner: UNT Libraries

Considerations in Designing Alloys for Laser-Powder Bed Fusion Additive Manufacturing

Description: This work identifies alloy terminal freezing range, columnar growth, grain coarsening, liquid availability towards the terminal stage of solidification, and segregation towards boundaries as primary factors affecting the hot-cracking susceptibility of fusion-based additive manufacturing (F-BAM) processed alloys. Additionally, an integrated computational materials engineering (ICME)-based approach has been formulated to design novel Al alloys, and high entropy alloys for F-BAM processing. The IC… more
This item is restricted from view until June 1, 2027.
Date: May 2022
Creator: Thapliyal, Saket
Partner: UNT Libraries

Corrosion Behavior of High Entropy Alloys in Molten Chloride and Molten Fluoride Salts

Description: High entropy alloys (HEAs) or complex concentrated alloys (CCAs) represent a new paradigm in structural alloy design. Molten salt corrosion behavior was studied for single-phase HEAs such as TaTiVWZr and HfTaTiVZr, and multi-phase HEAs such as AlCoCrFeNi2.1. De-alloying with porosity formation along the exposed surface and fluxing of unstable oxides were found to be primary corrosion mechanisms. Potentiodynamic polarization study was combined with systematic mass–loss study for TaTiVWZr, HfTaT… more
This item is restricted from view until June 1, 2024.
Date: May 2022
Creator: Patel, Kunjalkumar Babubhai
Partner: UNT Libraries
Back to Top of Screen