You limited your search to:

  Access Rights: Public
  Partner: UNT Libraries
 Degree Discipline: Chemistry
 Degree Level: Doctoral
 Collection: UNT Theses and Dissertations
Adhesion/diffusion barrier layers for copper integration: carbon-silicon polymer films and tantalum substrates

Adhesion/diffusion barrier layers for copper integration: carbon-silicon polymer films and tantalum substrates

Date: December 1999
Creator: Chen, Li
Description: The Semiconductor Industry Association (SIA) has identified the integration of copper (Cu) with low-dielectric-constant (low-k) materials as a critical goal for future interconnect architectures. A fundamental understanding of the chemical interaction of Cu with various substrates, including diffusion barriers and adhesion promoters, is essential to achieve this goal. The objective of this research is to develop novel organic polymers as Cu/low-k interfacial layers and to investigate popular barrier candidates, such as clean and modified tantalum (Ta) substrates. Carbon-silicon (C-Si) polymeric films have been formed by electron beam bombardment or ultraviolet (UV) radiation of molecularly adsorbed vinyl silane precursors on metal substrates under ultra-high vacuum (UHV) conditions. Temperature programmed desorption (TPD) studies show that polymerization is via the vinyl groups, while Auger electron spectroscopy (AES) results show that the polymerized films have compositions similar to the precursors. Films derived from vinyltrimethyl silane (VTMS) are adherent and stable on Ta substrates until 1100 K. Diffusion of deposited Cu overlayers is not observed below 800 K, with dewetting occurred only above 400 K. Hexafluorobenzene moieties can also be incorporated into the growing film with good thermal stability. Studies on the Ta substrates demonstrate that even sub-monolayer coverages of oxygen or carbide on polycrystalline ...
Contributing Partner: UNT Libraries
Aldohaloketenes and the Stereochemistry of Aldohaloketene Cycloadditions

Aldohaloketenes and the Stereochemistry of Aldohaloketene Cycloadditions

Date: May 1970
Creator: Hoff, Edwin Frank
Description: The objective of this research problem was to synthesize aldohaloketenes and investigate the chemistry of this new class of ketenes.
Contributing Partner: UNT Libraries
Computational studies of selected ruthenium catalysis reactions.

Computational studies of selected ruthenium catalysis reactions.

Date: December 2007
Creator: Barakat, Khaldoon A.
Description: Computational techniques were employed to investigate pathways that would improve the properties and characteristics of transition metal (i.e., ruthenium) catalysts, and to explore their mechanisms. The studied catalytic pathways are particularly relevant to catalytic hydroarylation of olefins. These processes involved the +2 to +3 oxidation of ruthenium and its effect on ruthenium-carbon bond strengths, carbon-hydrogen bond activation by 1,2-addition/reductive elimination pathways appropriate to catalytic hydrogen/deuterium exchange, and the possible intermediacy of highly coordinatively unsaturated (e.g., 14-electron) ruthenium complexes in catalysis. The calculations indicate a significant decrease in the Ru-CH3 homolytic bond dissociation enthalpy for the oxidation of TpRu(CO)(NCMe)(Me) to its RuIII cation through both reactant destabilization and product stabilization. This oxidation can thus lead to the olefin polymerization observed by Gunnoe and coworkers, since weak RuIII-C bonds would afford quick access to alkyl radical species. Calculations support the experimental proposal of a mechanism for catalytic hydrogen/deuterium exchange by a RuII-OH catalyst. Furthermore, calculational investigations reveal a probable pathway for the activation of C-H bonds that involves phosphine loss, 1,2-addition to the Ru-OH bond and then reversal of these steps with deuterium to incorporate it into the substrate. The presented results offer the indication for the net addition of aromatic C-H ...
Contributing Partner: UNT Libraries
Computational Study of Small Molecule Activation via Low-Coordinate Late First-Row Transition Metal Complexes

Computational Study of Small Molecule Activation via Low-Coordinate Late First-Row Transition Metal Complexes

Date: May 2010
Creator: Pierpont, Aaron
Description: Methane and dinitrogen are abundant precursors to numerous valuable chemicals such as methanol and ammonia, respectively. However, given the robustness of these substrates, catalytically circumventing the high temperatures and pressures required for such transformations has been a challenging task for chemists. In this work, computational studies of various transition metal catalysts for methane C-H activation and N2 activation have been carried out. For methane C-H activation, catalysts of the form LnM=E are studied, where Ln is the supporting ligand (dihydrophosphinoethane or β-diketiminate), E the activating ligand (O, NCH3, NCF3) at which C-H activation takes place, and M the late transition metal (Fe,Co,Ni,Cu). A hydrogen atom abstraction (HAA) / radical rebound (RR) mechanism is assumed for methane functionalization (CH4 à CH3EH). Since the best energetics are found for (β-diket)Ni=O and (β-diket)Cu=O catalysts, with or without CF3 substituents around the supporting ligand periphery, complete methane-to-methanol cycles were studied for such systems, for which N2O was used as oxygen atom transfer (OAT) reagent. Both monometallic and bimetallic OAT pathways are addressed. Monometallic Fe-N2 complexes of various supporting ligands (LnFe-N2) are studied at the beginning of the N2 activation chapter, where the effect of ligand on N2 activation in end-on vs. side-on N2 isomers ...
Contributing Partner: UNT Libraries
Conformationally Stable Cyclohexyllithium Compounds

Conformationally Stable Cyclohexyllithium Compounds

Date: January 1968
Creator: Selman, Charles Melvin
Description: Organolitnium compounds have been employed in synthetic worK for many years. However only during the last decade has much progress been made in establishing the mechanistic pathways for the reactions of these compounds.
Contributing Partner: UNT Libraries
The Crystal and Molecular Structures of Tri-(p-Fluorophenyl)-Amine and Tri-(p-Iodophenyl)-Amine

The Crystal and Molecular Structures of Tri-(p-Fluorophenyl)-Amine and Tri-(p-Iodophenyl)-Amine

Date: January 1970
Creator: Freeman, Gerald R. (Gerald Richard)
Description: Because of the need for data on the geometry of nitrogen in arylamines, the determination of the crystal and molecular structures of tri-(p-fluorophenyl)-amine (TFPA) and tri-(p-iodophenyl)-amine (TIPA) was undertaken as the subject of this dissertation.
Contributing Partner: UNT Libraries
The Crystal and Molecular Sturctures of 8-Hydroxyquinoline-N-Oxide and 2-Hydroxymethylpyridine-N-Oxide

The Crystal and Molecular Sturctures of 8-Hydroxyquinoline-N-Oxide and 2-Hydroxymethylpyridine-N-Oxide

Date: June 1970
Creator: Terry, John Christopher
Description: This dissertation looked at the crystal structure analysis of 2-hydroxymethylpyridine-N-oxide sine this compound could provide data on both substituent effects and hydrogen bonding.
Contributing Partner: UNT Libraries
Diffusion barriers/adhesion promoters. Surface and interfacial studies of copper and copper-aluminum alloys

Diffusion barriers/adhesion promoters. Surface and interfacial studies of copper and copper-aluminum alloys

Date: August 2000
Creator: Shepherd, Krupanand Solomon
Description: The focus of this research is to study the interaction between copper and the diffusion barrier/adhesion promoter. The behavior of copper sputter-deposited onto sputter-cleaned tantalum nitride is investigated. The data show that copper growth on tantalum nitride proceeds with the formation of 3-D islands, indicating poor adhesion characteristics between copper and Ta0.4N. Post-annealing experiments indicate that copper will diffuse into Ta0.4N at 800 K. Although the data suggests that Ta0.4N is effective in preventing copper diffusion, copper's inability to wet Ta0.4N will render this barrier ineffective. The interaction of copper with oxidized tantalum silicon nitride (O/TaSiN) is characterized. The data indicate that initial copper depositions result in the formation a conformal ionic layer followed by Cu(0) formation in subsequent depositions. Post-deposition annealing experiments performed indicate that although diffusion does not occur for temperatures less than 800 K, copper "de-wetting" occurs for temperatures above 500 K. These results indicate that in conditions where the substrate has been oxidized facile de-wetting of copper may occur. The behavior of a sputter-deposited Cu0.6Al0.4 film with SiO2 (Cu0.6Al0.4/SiO2) is investigated. The data indicate that aluminum segregates to the SiO2 interface and becomes oxidized. For copper coverages less than ~ 0.31 ML (based on a Cu/O ...
Contributing Partner: UNT Libraries
Electrochemical Disolution of  ZnO Single Crystals

Electrochemical Disolution of ZnO Single Crystals

Date: January 1970
Creator: Justice, David Dixon
Description: The separation of oxidation-reduction reactions into individual half-cells with a resulting "mixed potential" is well known as a dissolution mechanism for metals; however, the mechanism by which non-conducting crystals lose ions to the solution has been studied only slightly.
Contributing Partner: UNT Libraries
The Electrochemical Properties of the Mercury/lithium Nitrate-potassium Nitrate Eutectic Interface

The Electrochemical Properties of the Mercury/lithium Nitrate-potassium Nitrate Eutectic Interface

Date: August 1968
Creator: Flinn, David R.
Description: The original purpose of this investigation was to attempt to apply the coulostatic method directly to a molten salt system. The inability to duplicate the reported capacity data for this system resulted in an investigation of the probable cause of this discrepancy between the data obtained by these different methods (14, 15).
Contributing Partner: UNT Libraries
FIRST PREV 1 2 3 4 5 NEXT LAST