You limited your search to:

  Partner: UNT Libraries
 Language: English
 Collection: UNT Theses and Dissertations
The Philosophy of the Activity Movement

The Philosophy of the Activity Movement

Date: 1941
Creator: Glover, Lila Elizabeth
Description: The problem of this research is to analyze the philosophy of the activity movement in the United States from a sociological point of view. Specifically, the purpose of the study is to discover whether or not the activity movement grew out of the social conditions of the times and was designed to meet the staggering problems of social development and reconstruction in America.
Contributing Partner: UNT Libraries
Phosphatides of Atypical Mycobacteria

Phosphatides of Atypical Mycobacteria

Date: May 1968
Creator: Hollingsworth, Russell C.
Description: The purpose of this investigation was to extract, separate, partially characterize and compare the individual phospholipids of the atypical mycobacteria.
Contributing Partner: UNT Libraries
Phosphorescent Emissions of Coinage Metal-Phosphine Complexes: Theory and Photophysics

Phosphorescent Emissions of Coinage Metal-Phosphine Complexes: Theory and Photophysics

Date: December 2009
Creator: Sinha, Pankaj
Description: The major topics discussed are all relevant to the bright phosphorescent emissions of coinage metal complexes (Cu(I), Ag(I) and Au(I)) with an explanation of the theoretical background, computational results and ongoing work on the application in materials and optoelectronic devices. Density functional computations have been performed on the majority of the discussed complexes and determined that the most significant distortion that occurs in Au(I)-phosphine complexes is a near and beyond a T-shape within the P-Au-P angle when the complexes are photoexcited to the lowest phosphorescent excited state. The large distortion is experimentally qualified with the large Stokes' shift that occurs between the excitation and emission spectra and can be as large as 18 000 cm-1 for the neutral Au(I) complexes. The excited state distortion has been thoroughly investigated and it is determined that not only is it pertinent to the efficient luminescence but also for the tunability in the emission. The factors that affect tunability have been determined to be electronics, sterics, rigidity of solution and temperature. The luminescent shifts determined from varying these parameters have been described systematically and have revealed emission colors that span the entire visible spectrum. These astounding features that have been discovered within studies of ...
Contributing Partner: UNT Libraries
Phosphorus Metabolism in Atypical Mycobacteria

Phosphorus Metabolism in Atypical Mycobacteria

Date: August 1966
Creator: Carnes, James E.
Description: The design for this study was tri-phasic: 1) to establish growth time patterns for each group of atypical mycobacteria, 2) to demonstrate the dynamic state of phosphorus in the various fractions by determining its incorporation and turnover, 3) to determine quantitatively the amount of phosphorus in each fraction.
Contributing Partner: UNT Libraries
Phosphorus Retention and Fractionation in Masonry Sand and Light Weight Expanded Shale Used as Substrate in a Subsurface Flow Wetland

Phosphorus Retention and Fractionation in Masonry Sand and Light Weight Expanded Shale Used as Substrate in a Subsurface Flow Wetland

Access: Use of this item is restricted to the UNT Community.
Date: August 2002
Creator: Forbes, Margaret G.
Description: Constructed wetlands are considered an inefficient technology for long-term phosphorus (P) removal. The P retention effectiveness of subsurface wetlands can be improved by using appropriate substrates. The objectives of this study were to: (i) use sorption isotherms to estimate the P sorption capacity of the two materials, masonry sand and light weight expanded shale; (ii) describe dissolved P removal in small (2.7 m3) subsurface flow wetlands; (iii) quantify the forms of P retained by the substrates in the pilot cells; and (iv) use resulting data to assess the technical and economic feasibility of the most promising system to remove P. The P sorption capacity of masonry sand and expanded shale, as determined with Langmuir isotherms, was 60 mg/kg and 971 mg/kg respectively. In the pilot cells receiving secondarily treated wastewater, cells containing expanded shale retained a greater proportion of the incoming P (50.8 percent) than cells containing masonry sand (14.5 percent). After a year of operation, samples were analyzed for total P (TP) and total inorganic P (TIP). Subsamples were fractionated into labile-P, Fe+Al-bound P, humic-P, Ca+Mg-bound P, and residual-P. Means and standard deviations of TP retained by the expanded shale and masonry sand were 349 + 169 and 11.9 ...
Contributing Partner: UNT Libraries
The Photo-Alkylation of C4 Hydocarbons

The Photo-Alkylation of C4 Hydocarbons

Date: 1942
Creator: Oliver, Bob M.
Description: A study of the photo-alkylation of C4 hydrocarbons.
Contributing Partner: UNT Libraries
The Photo-Chemical Reactions of Isopentane

The Photo-Chemical Reactions of Isopentane

Date: 1945
Creator: Walker, Russell C.
Description: This thesis describes an experiment in the ultraviolet absorption of hydrocarbons.
Contributing Partner: UNT Libraries
Photoactivatable Quantum Dots in Super-Resolution Microscopy of Muscle

Photoactivatable Quantum Dots in Super-Resolution Microscopy of Muscle

Date: December 2010
Creator: Akel, Amal
Description: Super-resolution 3D imaging was achieved using newly synthesized photoactivatable quantum dot (PAQ dot) probes. Quantum dots were modified with a novel quencher system to make them photoactivatable. The unique properties of these PAQ dots enable single-fluorophore localization in three dimensions using a confocal microscopy optical sectioning method. Myosin and tropomyosin of rabbit myofibrilar bundles were specifically labeled with the newly synthesized PAQ dot. A sufficient number of single quantum dots were photoactivated, localized and reduced to their centroid and then reconstructed to a super-resolution image. The acquired super-resolution image shows a lateral and an axial sub-diffraction resolution and demonstrates ultrafine striations with widths less than 70 nm that are not evident by conventional confocal microscopy. The striations appear to be related to nebulin thin filament binding protein. This newly developed imaging system is cutting edge for its high resolution and localization as well its simplicity and convenience.
Contributing Partner: UNT Libraries
Photochemical and Photophysical Properties of Gold(I) Complexes and Phosphorescence Sensitization of Organic Luminophores

Photochemical and Photophysical Properties of Gold(I) Complexes and Phosphorescence Sensitization of Organic Luminophores

Date: August 2006
Creator: El-Bjeirami, Oussama
Description: Two major topics that involve synthetic strategies to enhance the phosphorescence of organic and inorganic luminophores have been investigated. The first topic involves, the photophysical and photochemical properties of the gold (I) complexes LAuIX (L = CO, RNC where R = alkyl or aryl group; X = halide or pseudohalide), which have been investigated and found to exhibit Au-centered phosphorescence and tunable photochemical reactivity. The investigations have shown a clear relationship between the luminescence energies and association modes. We have also demonstrated for the first time that aurophilic bonding and the ligand p-acceptance can sensitize the photoreactivity of Au(I) complexes. The second topic involves conventional organic fluorophores (arenes), which are made to exhibit room-temperature phosphorescence that originates from spin-orbit coupling owing to either an external or internal heavy atom effect in systematically designed systems that contain d10 metals. Facial complexation of polycyclic arenes to tris[{m-(3,4,5,6-tetrafluorophenylene)}mercury(II)], C18F12Hg3 (1) results in crystalline adducts that exhibit bright RGB (red-green-blue) phosphorescence bands at room temperature. This arene-centered phosphorescence is always accompanied by a reduction of the triplet excited state lifetime due to its sensitization by accelerating the radiative instead of the non-radiative decay. The results of both topics are significant for rational design of ...
Contributing Partner: UNT Libraries
Photochemical and Photophysical Properties of Mononuclear and Multinuclear Closed Shell D10 Coinage Metal Complexes and Their Metallo-organometallic Adducts

Photochemical and Photophysical Properties of Mononuclear and Multinuclear Closed Shell D10 Coinage Metal Complexes and Their Metallo-organometallic Adducts

Access: Use of this item is restricted to the UNT Community.
Date: December 2013
Creator: McDougald Jr., Roy N.
Description: This dissertation covers the studies of two major topics: the photochemistry of mononuclear and multinuclear gold(I) complexes and synthetic approaches to tailor photophysical properties of cyclic trinuclear d10 complexes. First a detailed photochemical examination into the photoreactivity of neutral mononuclear and multinuclear gold(I) complexes is discussed, with the aim of gold nanoparticle size and shape control for biomedical and catalysis applications. Next is a comprehensive systematic synthetic approach to tailor the photophysical properties of cyclic trinuclear d10 complexes. This synthetic approach includes an investigation of structure-luminescence relationships between cyclic trinuclear complexes, an examination into their π-acid/π-base reactivity with heavy metal cations and an exploration into the photophysical properties of new heterobimetallic cyclic trinuclear complexes. These photophysical properties inspections are used to screen materials for their employment in molecular electronic devices such as organic light-emitting diodes (OLEDs) and thin film transistors (OTFTs).
Contributing Partner: UNT Libraries