You limited your search to:

  Partner: UNT Libraries
 Decade: 1990-1999
 Language: English
 Degree Discipline: Mathematics
 Collection: UNT Theses and Dissertations
Aspects of Universality in Function Iteration

Aspects of Universality in Function Iteration

Date: December 1991
Creator: Taylor, John (John Allen)
Description: This work deals with some aspects of universal topological and metric dynamic behavior of iterated maps of the interval.
Contributing Partner: UNT Libraries
The Computation of Ultrapowers by Supercompactness Measures

The Computation of Ultrapowers by Supercompactness Measures

Date: August 1999
Creator: Smith, John C.
Description: The results from this dissertation are a computation of ultrapowers by supercompactness measures and concepts related to such measures. The second chapter gives an overview of the basic ideas required to carry out the computations. Included are preliminary ideas connected to measures, and the supercompactness measures. Order type results are also considered in this chapter. In chapter III we give an alternate characterization of 2 using the notion of iterated ordinal measures. Basic facts related to this characterization are also considered here. The remaining chapters are devoted to finding bounds fwith arguments taking place both inside and outside the ultrapowers. Conditions related to the upper bound are given in chapter VI.
Contributing Partner: UNT Libraries
Countable Additivity, Exhaustivity, and the Structure of Certain Banach Lattices

Countable Additivity, Exhaustivity, and the Structure of Certain Banach Lattices

Date: August 1999
Creator: Huff, Cheryl Rae
Description: The notion of uniform countable additivity or uniform absolute continuity is present implicitly in the Lebesgue Dominated Convergence Theorem and explicitly in the Vitali-Hahn-Saks and Nikodym Theorems, respectively. V. M. Dubrovsky studied the connection between uniform countable additivity and uniform absolute continuity in a series of papers, and Bartle, Dunford, and Schwartz established a close relationship between uniform countable additivity in ca(Σ) and operator theory for the classical continuous function spaces C(K). Numerous authors have worked extensively on extending and generalizing the theorems of the preceding authors. Specifically, we mention Bilyeu and Lewis as well as Brooks and Drewnowski, whose efforts molded the direction and focus of this paper. This paper is a study of the techniques used by Bell, Bilyeu, and Lewis in their paper on uniform exhaustivity and Banach lattices to present a Banach lattice version of two important and powerful results in measure theory by Brooks and Drewnowski. In showing that the notions of exhaustivity and continuity take on familiar forms in certain Banach lattices of measures they show that these important measure theory results follow as corollaries of the generalized Banach lattice versions. This work uses their template to generalize results established by Bator, Bilyeu, and ...
Contributing Partner: UNT Libraries
Existence of Many Sign Changing Non Radial Solutions for Semilinear Elliptic Problems on Annular Domains

Existence of Many Sign Changing Non Radial Solutions for Semilinear Elliptic Problems on Annular Domains

Date: August 1998
Creator: Finan, Marcel Basil
Description: The aim of this work is the study of the existence and multiplicity of sign changing nonradial solutions to elliptic boundary value problems on annular domains.
Contributing Partner: UNT Libraries
A Generalization of Sturmian Sequences: Combinatorial Structure and Transcendence

A Generalization of Sturmian Sequences: Combinatorial Structure and Transcendence

Date: August 1998
Creator: Risley, Rebecca N.
Description: We investigate a class of minimal sequences on a finite alphabet Ak = {1,2,...,k} having (k - 1)n + 1 distinct subwords of length n. These sequences, originally defined by P. Arnoux and G. Rauzy, are a natural generalization of binary Sturmian sequences. We describe two simple combinatorial algorithms for constructing characteristic Arnoux-Rauzy sequences (one of which is new even in the Sturmian case). Arnoux-Rauzy sequences arising from fixed points of primitive morphisms are characterized by an underlying periodic structure. We show that every Arnoux-Rauzy sequence contains arbitrarily large subwords of the form V^2+ε and, in the Sturmian case, arbitrarily large subwords of the form V^3+ε. Finally, we prove that an irrational number whose base b-digit expansion is an Arnoux-Rauzy sequence is transcendental.
Contributing Partner: UNT Libraries
Minimality of the Special Linear Groups

Minimality of the Special Linear Groups

Date: December 1997
Creator: Hayes, Diana Margaret
Description: Let F denote the field of real numbers, complex numbers, or a finite algebraic extension of the p-adic field. We prove that the special linear group SLn(F) with the usual topology induced by F is a minimal topological group. This is accomplished by first proving the minimality of the upper triangular group in SLn(F). The proof for the upper triangular group uses an induction argument on a chain of upper triangular subgroups and relies on general results for locally compact topological groups, quotient groups, and subgroups. Minimality of SLn(F) is concluded by appealing to the associated Lie group decomposition as the product of a compact group and an upper triangular group. We also prove the universal minimality of homeomorphism groups of one dimensional manifolds, and we give a new simple proof of the universal minimality of S∞.
Contributing Partner: UNT Libraries
Multifractal Analysis of Parabolic Rational Maps

Multifractal Analysis of Parabolic Rational Maps

Date: August 1998
Creator: Byrne, Jesse William
Description: The investigation of the multifractal spectrum of the equilibrium measure for a parabolic rational map with a Lipschitz continuous potential, φ, which satisfies sup φ < P(φ) x∈J(T) is conducted. More specifically, the multifractal spectrum or spectrum of singularities, f(α) is studied.
Contributing Partner: UNT Libraries
Natural Smooth Measures on the Leaves of the Unstable Manifold of Open Billiard Dynamical Systems

Natural Smooth Measures on the Leaves of the Unstable Manifold of Open Billiard Dynamical Systems

Date: December 1998
Creator: Richardson, Peter A. (Peter Adolph), 1955-
Description: In this paper, we prove, for a certain class of open billiard dynamical systems, the existence of a family of smooth probability measures on the leaves of the dynamical system's unstable manifold. These measures describe the conditional asymptotic behavior of forward trajectories of the system. Furthermore, properties of these families are proven which are germane to the PYC programme for these systems. Strong sufficient conditions for the uniqueness of such families are given which depend upon geometric properties of the system's phase space. In particular, these results hold for a fairly nonrestrictive class of triangular configurations of scatterers.
Contributing Partner: UNT Libraries
On Groups of Positive Type

On Groups of Positive Type

Date: August 1995
Creator: Moore, Monty L.
Description: We describe groups of positive type and prove that a group G is of positive type if and only if G admits a non-trivial partition. We completely classify groups of type 2, and present examples of other groups of positive type as well as groups of type zero.
Contributing Partner: UNT Libraries
On the Cohomology of the Complement of a Toral Arrangement

On the Cohomology of the Complement of a Toral Arrangement

Date: August 1999
Creator: Sawyer, Cameron Cunningham
Description: The dissertation uses a number of mathematical formula including de Rham cohomology with complex coefficients to state and prove extension of Brieskorn's Lemma theorem.
Contributing Partner: UNT Libraries
FIRST PREV 1 2 NEXT LAST