You limited your search to:

  Partner: UNT Libraries
 Language: English
 Degree Discipline: Computer Science
 Collection: UNT Theses and Dissertations
Temporally Correct Algorithms for Transaction Concurrency Control in Distributed Databases

Temporally Correct Algorithms for Transaction Concurrency Control in Distributed Databases

Access: Use of this item is restricted to the UNT Community.
Date: May 2001
Creator: Tuck, Terry W.
Description: Many activities are comprised of temporally dependent events that must be executed in a specific chronological order. Supportive software applications must preserve these temporal dependencies. Whenever the processing of this type of an application includes transactions submitted to a database that is shared with other such applications, the transaction concurrency control mechanisms within the database must also preserve the temporal dependencies. A basis for preserving temporal dependencies is established by using (within the applications and databases) real-time timestamps to identify and order events and transactions. The use of optimistic approaches to transaction concurrency control can be undesirable in such situations, as they allow incorrect results for database read operations. Although the incorrectness is detected prior to transaction committal and the corresponding transaction(s) restarted, the impact on the application or entity that submitted the transaction can be too costly. Three transaction concurrency control algorithms are proposed in this dissertation. These algorithms are based on timestamp ordering, and are designed to preserve temporal dependencies existing among data-dependent transactions. The algorithms produce execution schedules that are equivalent to temporally ordered serial schedules, where the temporal order is established by the transactions' start times. The algorithms provide this equivalence while supporting currency to the ...
Contributing Partner: UNT Libraries
Computational Complexity of Hopfield Networks

Computational Complexity of Hopfield Networks

Date: August 1998
Creator: Tseng, Hung-Li
Description: There are three main results in this dissertation. They are PLS-completeness of discrete Hopfield network convergence with eight different restrictions, (degree 3, bipartite and degree 3, 8-neighbor mesh, dual of the knight's graph, hypercube, butterfly, cube-connected cycles and shuffle-exchange), exponential convergence behavior of discrete Hopfield network, and simulation of Turing machines by discrete Hopfield Network.
Contributing Partner: UNT Libraries
Modeling Alcohol Consumption Using Blog Data

Modeling Alcohol Consumption Using Blog Data

Date: May 2013
Creator: Koh, Kok Chuan
Description: How do the content and writing style of people who drink alcohol beverages stand out from non-drinkers? How much information can we learn about a person's alcohol consumption behavior by reading text that they have authored? This thesis attempts to extend the methods deployed in authorship attribution and authorship profiling research into the domain of automatically identifying the human action of drinking alcohol beverages. I examine how a psycholinguistics dictionary (the Linguistics Inquiry and Word Count lexicon, developed by James Pennebaker), together with Kenneth Burke's concept of words as symbols of human action, and James Wertsch's concept of mediated action provide a framework for analyzing meaningful data patterns from the content of blogs written by consumers of alcohol beverages. The contributions of this thesis to the research field are twofold. First, I show that it is possible to automatically identify blog posts that have content related to the consumption of alcohol beverages. And second, I provide a framework and tools to model human behavior through text analysis of blog data.
Contributing Partner: UNT Libraries
Optimizing Non-pharmaceutical Interventions Using Multi-coaffiliation Networks

Optimizing Non-pharmaceutical Interventions Using Multi-coaffiliation Networks

Date: May 2013
Creator: Loza, Olivia G.
Description: Computational modeling is of fundamental significance in mapping possible disease spread, and designing strategies for its mitigation. Conventional contact networks implement the simulation of interactions as random occurrences, presenting public health bodies with a difficult trade off between a realistic model granularity and robust design of intervention strategies. Recently, researchers have been investigating the use of agent-based models (ABMs) to embrace the complexity of real world interactions. At the same time, theoretical approaches provide epidemiologists with general optimization models in which demographics are intrinsically simplified. The emerging study of affiliation networks and co-affiliation networks provide an alternative to such trade off. Co-affiliation networks maintain the realism innate to ABMs while reducing the complexity of contact networks into distinctively smaller k-partite graphs, were each partition represent a dimension of the social model. This dissertation studies the optimization of intervention strategies for infectious diseases, mainly distributed in school systems. First, concepts of synthetic populations and affiliation networks are extended to propose a modified algorithm for the synthetic reconstruction of populations. Second, the definition of multi-coaffiliation networks is presented as the main social model in which risk is quantified and evaluated, thereby obtaining vulnerability indications for each school in the system. Finally, maximization ...
Contributing Partner: UNT Libraries
Visualization of Surfaces and 3D Vector Fields

Visualization of Surfaces and 3D Vector Fields

Date: August 2002
Creator: Li, Wentong
Description: Visualization of trivariate functions and vector fields with three components in scientific computation is still a hard problem in compute graphic area. People build their own visualization packages for their special purposes. And there exist some general-purpose packages (MatLab, Vis5D), but they all require extensive user experience on setting all the parameters in order to generate images. We present a simple package to produce simplified but productive images of 3-D vector fields. We used this method to render the magnetic field and current as solutions of the Ginzburg-Landau equations on a 3-D domain.
Contributing Partner: UNT Libraries
Intrinsic and Extrinsic Adaptation in a Simulated Combat Environment

Intrinsic and Extrinsic Adaptation in a Simulated Combat Environment

Date: May 1995
Creator: Dombrowsky, Steven P. (Steven Paul)
Description: Genetic algorithm and artificial life techniques are applied to the development of challenging and interesting opponents in a combat-based computer game. Computer simulations are carried out against an idealized human player to gather data on the effectiveness of the computer generated opponents.
Contributing Partner: UNT Libraries
Exon/Intron Discrimination Using the Finite Induction Pattern Matching Technique

Exon/Intron Discrimination Using the Finite Induction Pattern Matching Technique

Date: December 1997
Creator: Taylor, Pamela A., 1941-
Description: DNA sequence analysis involves precise discrimination of two of the sequence's most important components: exons and introns. Exons encode the proteins that are responsible for almost all the functions in a living organism. Introns interrupt the sequence coding for a protein and must be removed from primary RNA transcripts before translation to protein can occur. A pattern recognition technique called Finite Induction (FI) is utilized to study the language of exons and introns. FI is especially suited for analyzing and classifying large amounts of data representing sequences of interest. It requires no biological information and employs no statistical functions. Finite Induction is applied to the exon and intron components of DNA by building a collection of rules based upon what it finds in the sequences it examines. It then attempts to match the known rule patterns with new rules formed as a result of analyzing a new sequence. A high number of matches predict a probable close relationship between the two sequences; a low number of matches signifies a large amount of difference between the two. This research demonstrates FI to be a viable tool for measurement when known patterns are available for the formation of rule sets.
Contributing Partner: UNT Libraries
Intelligent Memory Management Heuristics

Intelligent Memory Management Heuristics

Date: December 2003
Creator: Panthulu, Pradeep
Description: Automatic memory management is crucial in implementation of runtime systems even though it induces a significant computational overhead. In this thesis I explore the use of statistical properties of the directed graph describing the set of live data to decide between garbage collection and heap expansion in a memory management algorithm combining the dynamic array represented heaps with a mark and sweep garbage collector to enhance its performance. The sampling method predicting the density and the distribution of useful data is implemented as a partial marking algorithm. The algorithm randomly marks the nodes of the directed graph representing the live data at different depths with a variable probability factor p. Using the information gathered by the partial marking algorithm in the current step and the knowledge gathered in the previous iterations, the proposed empirical formula predicts with reasonable accuracy the density of live nodes on the heap, to decide between garbage collection and heap expansion. The resulting heuristics are tested empirically and shown to improve overall execution performance significantly in the context of the Jinni Prolog compiler's runtime system.
Contributing Partner: UNT Libraries
Toward a Data-Type-Based Real Time Geospatial Data Stream Management System

Toward a Data-Type-Based Real Time Geospatial Data Stream Management System

Date: May 2011
Creator: Zhang, Chengyang
Description: The advent of sensory and communication technologies enables the generation and consumption of large volumes of streaming data. Many of these data streams are geo-referenced. Existing spatio-temporal databases and data stream management systems are not capable of handling real time queries on spatial extents. In this thesis, we investigated several fundamental research issues toward building a data-type-based real time geospatial data stream management system. The thesis makes contributions in the following areas: geo-stream data models, aggregation, window-based nearest neighbor operators, and query optimization strategies. The proposed geo-stream data model is based on second-order logic and multi-typed algebra. Both abstract and discrete data models are proposed and exemplified. I further propose two useful geo-stream operators, namely Region By and WNN, which abstract common aggregation and nearest neighbor queries as generalized data model constructs. Finally, I propose three query optimization algorithms based on spatial, temporal, and spatio-temporal constraints of geo-streams. I show the effectiveness of the data model through many query examples. The effectiveness and the efficiency of the algorithms are validated through extensive experiments on both synthetic and real data sets. This work established the fundamental building blocks toward a full-fledged geo-stream database management system and has potential impact in many ...
Contributing Partner: UNT Libraries
A Wireless Traffic Surveillance System Using Video Analytics

A Wireless Traffic Surveillance System Using Video Analytics

Date: May 2011
Creator: Luo, Ning
Description: Video surveillance systems have been commonly used in transportation systems to support traffic monitoring, speed estimation, and incident detection. However, there are several challenges in developing and deploying such systems, including high development and maintenance costs, bandwidth bottleneck for long range link, and lack of advanced analytics. In this thesis, I leverage current wireless, video camera, and analytics technologies, and present a wireless traffic monitoring system. I first present an overview of the system. Then I describe the site investigation and several test links with different hardware/software configurations to demonstrate the effectiveness of the system. The system development process was documented to provide guidelines for future development. Furthermore, I propose a novel speed-estimation analytics algorithm that takes into consideration roads with slope angles. I prove the correctness of the algorithm theoretically, and validate the effectiveness of the algorithm experimentally. The experimental results on both synthetic and real dataset show that the algorithm is more accurate than the baseline algorithm 80% of the time. On average the accuracy improvement of speed estimation is over 3.7% even for very small slope angles.
Contributing Partner: UNT Libraries
FIRST PREV 1 2 3 4 5 NEXT LAST