Search Results

open access

Adherence/Diffusion Barrier Layers for Copper Metallization: Amorphous Carbon:Silicon Polymerized Films

Description: Semiconductor circuitry feature miniaturization continues in response to Moore 's Law pushing the limits of aluminum and forcing the transition to Cu due to its lower resistivity and electromigration. Copper diffuses into silicon dioxide under thermal and electrical stresses, requiring the use of barriers to inhibit diffusion, adding to the insulator thickness and delay time, or replacement of SiO2 with new insulator materials that can inhibit diffusion while enabling Cu wetting. This stu… more
Date: May 2004
Creator: Pritchett, Merry
Partner: UNT Libraries
open access

Analysis of PAH and PCB Emissions from the Combustion of dRDF and the Nondestructive Analysis of Stamp Adhesives

Description: This work includes two unrelated areas of research. The first portion of this work involved combusting densified refuse derived fuel (dRDF) with coal and studying the effect that Ca(0H)2 binder had on reducing polycyclic aromatic hydrocarbon (PAH) and polychlorinated biphenyl (PCB) emissions. The second area of work was directed at developing nondestructive infrared techniques in order to aid in the analysis of postage stamp adhesives. With Americans generating 150-200 million tons a year of Mu… more
Date: May 1989
Creator: Poslusny, Matthew
Partner: UNT Libraries
open access

The Analysis of PCDD and PCDF Emissions from the Cofiring of Densified Refuse Derived Fuel and Coal

Description: The United States leads the world in per capita production of Municipal Solid Waste (MSW), generating approximately 200 million tons per year. By 2000 A.D. the US EPA predicts a 20% rise in these numbers. Currently the major strategies of MSW disposal are (i) landfill and (ii) incineration. The amount of landfill space in the US is on a rapid decline. There are -10,000 landfill sites in the country, of which only 65-70% are still in use. The Office of Technology Assessment (OTA) predicts an 80%… more
Date: August 1990
Creator: Moore, Paul, 1962-
Partner: UNT Libraries
open access

Calcium Silicates: Glass Content and Hydration Behavior

Description: Pure, MgO doped and B2C3 doped monocalcium, dicalcium, and tricalcium silicates were prepared with different glass contents. Characterization of the anhydrous materials was carried out using optical microscopy, infrared absorption spectroscopy, and X-ray powder diffraction. The hydration of these compounds was studied as a function of the glass contents. The hydration studies were conducted at 25°C. Water/solid ratios of 0.5, 1, 10, and 16 were used for the various experiments. The hydration be… more
Date: August 1987
Creator: Zgambo, Thomas P. (Thomas Patrick)
Partner: UNT Libraries
open access

Carbon Nanostructure Based Donor-acceptor Systems for Solar Energy Harvesting

Description: Carbon nanostructure based functional hybrid molecules hold promise in solarenergy harvesting. Research presented in this dissertation systematically investigates building of various donor-acceptor nanohybrid systems utilizing enriched single walled carbon nanotube and graphene with redox and photoactive molecules such as fullerene, porphyrin, and phthalocyanine. Design, synthesis, and characterization of the donor-acceptor hybrid systems have been carefully performed via supramolecular binding… more
Date: December 2013
Creator: Das, Sushanta Kumar
Partner: UNT Libraries
open access

Characterization of Ionic Liquid Solvents Using a Temperature Independent, Ion-Specific Abraham Parameter Model

Description: Experimental data for the logarithm of the gas-to-ionic liquid partition coefficient (log K) have been compiled from the published literature for over 40 ionic liquids over a wide temperature range. Temperature independent correlations based on the Gibbs free energy equation utilizing known Abraham solvation model parameters have been derived for the prediction of log K for 12 ionic liquids to within a standard deviation of 0.114 log units over a temperature range of over 60 K. Temperature inde… more
Date: December 2014
Creator: Stephens, Timothy W.
Partner: UNT Libraries
open access

Characterization of Novel Solvents and Absorbents for Chemical Separations

Description: Predictive methods have been employed to characterize chemical separation mediums including solvents and absorbents. These studies included creating Abraham solvation parameter models for room-temperature ionic liquids (RTILs) utilizing novel ion-specific and group contribution methodologies, polydimethyl siloxane (PDMS) utilizing standard methodology, and the micelles cetyltrimethylammonium bromide (CTAB) and sodium dodecylsulfate (SDS) utilizing a combined experimental setup methodology with … more
Date: May 2011
Creator: Grubbs, Laura Michelle Sprunger
Partner: UNT Libraries
open access

Characterization of Post-Plasma Etch Residues and Plasma Induced Damage Evaluation on Patterned Porous Low-K Dielectrics Using MIR-IR Spectroscopy

Description: As the miniaturization of functional devices in integrated circuit (IC) continues to scale down to sub-nanometer size, the process complexity increases and makes materials characterization difficult. One of our research effort demonstrates the development and application of novel Multiple Internal Reflection Infrared Spectroscopy (MIR-IR) as a sensitive (sub-5 nm) metrology tool to provide precise chemical bonding information that can effectively guide through the development of more efficient … more
Date: May 2016
Creator: Rimal, Sirish
Partner: UNT Libraries
open access

Chemical and Electronic Structure of Aromatic/Carborane Composite Films by PECVD for Neutron Detection

Description: Boron carbide-aromatic composites, formed by plasma-enhanced co-deposition of carboranes and aromatic precursors, present enhanced electron-hole separation as neutron detector. This is achieved by aromatic coordination to the carborane icosahedra and results in improved neutron detection efficiency. Photoemission (XPS) and FTIR suggest that chemical bonding between B atoms in icosahedra and aromatic contents with preservation of π system during plasma process. XPS, UPS, density functional theo… more
Date: December 2016
Creator: Dong, Bin
Partner: UNT Libraries
open access

Chemistry, Detection, and Control of Metals during Silicon Processing

Description: This dissertation focuses on the chemistry, detection, and control of metals and metal contaminants during manufacturing of integrated circuits (ICs) on silicon wafers. Chapter 1 begins with an overview of IC manufacturing, including discussion of the common aqueous cleaning solutions, metallization processes, and analytical techniques that will be investigated in subsequent chapters. Chapter 2 covers initial investigations into the chemistry of the SC2 clean - a mixture of HCl, H2O2, and DI wa… more
Date: May 2005
Creator: Hurd, Trace Q.
Partner: UNT Libraries
open access

Cu Electrodeposition on Ru-Ta and Corrosion of Plasma Treated Cu in Post Etch Cleaning Solution

Description: In this work, the possibility of Cu electrodeposition on Ru-Ta alloy thin films is explored. Ru and Ta were sputter deposited on Si substrate with different composition verified by RBS. Four point probe, XRD, TEM and AFM were used to study the properties of Ru-Ta thin films such as sheet resistance, crystallinity, grain size, etc. Cyclic voltammetry is used to study the Cu electrodeposition characteristics on Ru-Ta after various surface pretreatments. The results provide insights on the rem… more
Date: August 2011
Creator: Sundararaju Meenakshiah Pillai, Karthikeyan
Partner: UNT Libraries

Cu Electrodeposition on Ru with a Chemisorbed Iodine Surface Layer.

Description: An iodine surface layer has been prepared on Ru(poly) and Ru(0001) electrodes by exposure to iodine vapor in UHV and polarizing in a 0.1 M HClO4/0.005 M KI solution, respectively. A saturation coverage of I on a Ru(poly) electrode passivates the Ru surface against significant hydroxide, chemisorbed oxygen or oxide formation during exposure to water vapor over an electrochemical cell in a UHV-electrochemistry transfer system. Immersion of I-Ru(poly) results in greater hydroxide and chemisorbed o… more
Access: Restricted to the UNT Community Members at a UNT Libraries Location.
Date: August 2005
Creator: Lei, Jipu
Partner: UNT Libraries
open access

Design and Development of Soft Landing Ion Mobility: A Novel Instrument for Preparative Material Development

Description: The design and fabrication of a novel soft landing instrument Soft Landing Ion Mobility (SLIM) is described here. Topics covered include history of soft landing, gas phase mobility theory, the design and fabrication of SLIM, as well as applications pertaining to soft landing. Principle applications devised for this instrument involved the gas phase separation and selection of an ionized component from a multicomponent gas phase mixture as combing technique to optimize coatings, catalyst, and a … more
Date: August 2011
Creator: Davila, Stephen Juan
Partner: UNT Libraries
open access

Design Considerations and Implementation of Portable Mass Spectrometers for Environmental Applications

Description: Portable mass spectrometers provide a unique opportunity to obtain in situ measurements. This minimizes need for sample collection or in laboratory analysis. Membrane Inlet Mass Spectrometry (MIMS) utilizing a semi permeable membrane for selective rapid introduction for analysis. Polydimethylsiloxane membranes have been proven to be robust in selecting for aromatic chemistries. Advances in front end design have allowed for increased sensitivity, rapid sample analysis, and on line measurements. … more
Date: May 2017
Creator: Mach, Phillip M.
Partner: UNT Libraries
open access

Development of a Laponite Pluronic Composite for Foaming Applications

Description: The focus of the following research was to provide an optimized particle stabilized foam of Laponite and Pluronic L62 in water by understanding (1) the Laponite-Pluronic interactions and properties for improved performance in a particle stabilized foam and (2) the interfacial properties between air and the Laponite-Pluronic complex. These studies were conducted using both bulk and interfacial rheology, XRD, sessile droplet, TGA and UV-vis. Two novel and simple techniques, lamella break point an… more
Date: December 2012
Creator: Davis, James William
Partner: UNT Libraries
open access

The Development of an Analytical Microwave Electromagnetic Pulse Transmission Probe and Preliminary Test Results

Description: Within this educational endeavor instrumental development was explored through the investigation of microwave induce stable electromagnetic waves within a non-linear yttrium iron garnet ferromagnetic waveguide. The resulting magnetostatic surface waves were investigated as a possible method of rapid analytical evaluation of material composition. Initial analytical results indicate that the interaction seen between wave and material electric and magnetic fields will allow phase coherence recover… more
Date: May 2011
Creator: Griffith, William Francis
Partner: UNT Libraries
open access

Development of Novel Semi-conducting Ortho-carborane Based Polymer Films: Enhanced Electronic and Chemical Properties

Description: A novel class of semi-conducting ortho-carborane (B10C2H12) based polymer films with enhanced electronic and chemical properties has been developed. The novel films are formed from electron-beam cross-linking of condensed B10C2H12 and B10C2H12 co-condensed with aromatic linking units (Y) (Y=1,4-diaminobenzene (DAB), benzene (BNZ) and pyridine (PY)) at 110 K. The bonding and electronic properties of the novel films were investigated using X-ray photoelectron spectroscopy (XPS), UV photoelectro… more
Date: August 2013
Creator: Pasquale, Frank L.
Partner: UNT Libraries
open access

Direct Atomic Level Controlled Growth and Characterization of h-BN and Graphene Heterostructures on Magnetic Substrates for Spintronic Applications

Description: Epitaxial multilayer h-BN(0001) heterostructures and graphene/h-BN heterostructures have many potential applications in spintronics. The use of h-BN and graphene require atomically precise control and azimuthal alignment of the individual layers in the structure. These in turn require fabrication of devices by direct scalable methods rather than physical transfer of BN and graphene flakes, and such scalable methods are also critical for industrially compatible development of 2D devices. The … more
Date: August 2016
Creator: Beatty, John D.
Partner: UNT Libraries
open access

Direct Inject Mass Spectrometry for Illicit Chemistry Detection and Characterization

Description: The field of direct inject mass spectrometry includes a massive host of ambient ionization techniques that are especially useful for forensic analysts. Whether the sample is trace amounts of drugs or explosives or bulk amounts of synthetic drugs from a clandestine laboratory, the analysis of forensic evidence requires minimal sample preparation, evidence preservation, and high sensitivity. Direct inject mass spectrometry techniques can rarely provide all of these. Direct analyte-probed nanoe… more
Date: May 2016
Creator: Williams, Kristina Charlene
Partner: UNT Libraries
open access

The Effect of Plasma on Silicon Nitride, Oxynitride and Other Metals for Enhanced Epoxy Adhesion for Packaging Applications

Description: The effects of direct plasma chemistries on carbon removal from silicon nitride (SiNx) and oxynitride (SiOxNy ) surfaces and Cu have been studied by x-photoelectron spectroscopy (XPS) and ex-situ contact angle measurements. The data indicate that O2,NH3 and He capacitively coupled plasmas are effective at removing adventitious carbon from silicon nitride (SiNx) and Silicon oxynitride (SiOxNy ) surfaces. O2plasma and He plasma treatment results in the formation of silica overlayer. In contrast,… more
Date: August 2014
Creator: Gaddam, Sneha Sen
Partner: UNT Libraries
open access

Electrochemical Synthesis and Applications of Layered Double Hydroxides and Derivatives

Description: Layered double hydroxides (LDH) are a class of anionic clay with alternating layers of positive and negative charge. A metal hydroxide layer with divalent and trivalent metals with a positive charge is complemented by an interlayer region containing anions and water with a negative charge. The anions can be exchanged under favorable conditions. Hydrotalcite (Mg6Al2(OH)16[CO3]·4H2O) and other variations are naturally occurring minerals. Synthetic LDH can be prepared as a powder or film by numero… more
Date: August 2015
Creator: Kahl, Michael S.
Partner: UNT Libraries

Electrochemical Synthesis and Characterization of Inorganic Materials from Aqueous Solutions

Description: The dissertation consists of the following three sections: 1. Hydroxyapatite (HA) coatings. In this work, we deposited HA precursor films from weak basic electrolytic solution (pH= 8-9) via an electrochemical approach; the deposits were changed into crystallite coatings of hydroxyapatite by sintering at specific temperatures (600-800 ºC). The formed coatings were mainly characterized by powder X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), and scanning electron microsc… more
Access: Restricted to the UNT Community Members at a UNT Libraries Location.
Date: December 2006
Creator: Yuan, Qiuhua
Partner: UNT Libraries
open access

Electrochemically Deposited Metal Alloy-silicate Nanocomposite Corrosion Resistant Materials

Description: Zinc-nickel ?-phase silicate and copper-nickel silicate corrosion resistant coatings have been prepared via electrochemical methods to improve currently available corrosion resistant materials in the oil and gas industry. A layered silicate, montmorillonite, has been incorporated into the coatings for increased corrosion protection. For the zinc nickel silicate coatings, optimal plating conditions were determined to be a working pH range of 9.3 -9.5 with a borate based electrolyte solution, res… more
Date: May 2013
Creator: Conrad, Heidi Ann
Partner: UNT Libraries
open access

Electrodeposited Metal Matrix Composites for Enhanced Corrosion Protection and Mechanical Properties

Description: In the oil and gas industry, high corrosion resistance and hardness are needed to extend the lifetime of the coatings due to exposure to high stress and salt environments. Electrodeposition has become a favorable technique in synthesizing coatings because of low cost, convenience, and the ability to work at low temperatures. Electrodeposition of metal matrix composites has become popular for enhanced corrosion resistance and hardness in the oil and gas industry because of the major problems tha… more
Date: May 2016
Creator: Thurber, Casey Ray
Partner: UNT Libraries
Back to Top of Screen