## You limited your search to:

**Partner:**UNT Libraries

**Department:**Department of Mathematics

**Decade:**2010-2019

**Language:**English

**Collection:**UNT Theses and Dissertations

### Algebraically Determined Rings of Functions

**Date:**August 2010

**Creator:**McLinden, Alexander Patrick

**Description:**Let R be any of the following rings: the smooth functions on R^2n with the Poisson bracket, the Hamiltonian vector fields on a symplectic manifold, the Lie algebra of smooth complex vector fields on C, or a variety of rings of functions (real or complex valued) over 2nd countable spaces. Then if H is any other Polish ring and φ:H →R is an algebraic isomorphism, then it is also a topological isomorphism (i.e. a homeomorphism). Moreover, many such isomorphisms between function rings induce a homeomorphism of the underlying spaces. It is also shown that there is no topology in which the ring of real analytic functions on R is a Polish ring.

**Contributing Partner:**UNT Libraries

**Permallink:**digital.library.unt.edu/ark:/67531/metadc31543/

### Algebraically Determined Semidirect Products

**Date:**May 2011

**Creator:**Jasim, We'am Muhammad

**Description:**Let G be a Polish group. We say that G is an algebraically determined Polish group if given any Polish group L and any algebraic isomorphism from L to G, then the algebraic isomorphism is a topological isomorphism. We will prove a general theorem that gives useful sufficient conditions for a semidirect product of two Polish groups to be algebraically determined. This will smooth the way for the proofs for some special groups. For example, let H be a separable Hilbert space and let G be a subset of the unitary group U(H) acting transitively on the unit sphere. Assume that -I in G and G is a Polish topological group in some topology such that H x G to H, (x,U) to U(x) is continuous, then H x G is a Polish topological group. Hence H x G is an algebraically determined Polish group. In addition, we apply the above the above result on the unitary group U(A) of a separable irreducible C*-algebra A with identity acting transitively on the unit sphere in a separable Hilbert space H and proved that the natural semidirect product H x U(A) is an algebraically determined Polish group. A similar theorem is true ...

**Contributing Partner:**UNT Libraries

**Permallink:**digital.library.unt.edu/ark:/67531/metadc67993/

### Centers of Invariant Differential Operator Algebras for Jacobi Groups of Higher Rank

**Date:**August 2013

**Creator:**Dahal, Rabin

**Description:**Let G be a Lie group acting on a homogeneous space G/K. The center of the universal enveloping algebra of the Lie algebra of G maps homomorphically into the center of the algebra of differential operators on G/K invariant under the action of G. In the case that G is a Jacobi Lie group of rank 2, we prove that this homomorphism is surjective and hence that the center of the invariant differential operator algebra is the image of the center of the universal enveloping algebra. This is an extension of work of Bringmann, Conley, and Richter in the rank 1case.

**Contributing Partner:**UNT Libraries

**Permallink:**digital.library.unt.edu/ark:/67531/metadc283833/

### A Comparative Study of Non Linear Conjugate Gradient Methods

**Date:**August 2013

**Creator:**Pathak, Subrat

**Description:**We study the development of nonlinear conjugate gradient methods, Fletcher Reeves (FR) and Polak Ribiere (PR). FR extends the linear conjugate gradient method to nonlinear functions by incorporating two changes, for the step length αk a line search is performed and replacing the residual, rk (rk=b-Axk) by the gradient of the nonlinear objective function. The PR method is equivalent to FR method for exact line searches and when the underlying quadratic function is strongly convex. The PR method is basically a variant of FR and primarily differs from it in the choice of the parameter βk. On applying the nonlinear Rosenbrock function to the MATLAB code for the FR and the PR algorithms we observe that the performance of PR method (k=29) is far better than the FR method (k=42). But, we observe that when the MATLAB codes are applied to general nonlinear functions, specifically functions whose minimum is a large negative number not close to zero and the iterates too are large values far off from zero the PR algorithm does not perform well. This problem with the PR method persists even if we run the PR algorithm for more iterations or with an initial guess closer to the ...

**Contributing Partner:**UNT Libraries

**Permallink:**digital.library.unt.edu/ark:/67531/metadc283864/

### Condition-dependent Hilbert Spaces for Steepest Descent and Application to the Tricomi Equation

**Date:**August 2014

**Creator:**Montgomery, Jason W.

**Description:**A steepest descent method is constructed for the general setting of a linear differential equation paired with uniqueness-inducing conditions which might yield a generally overdetermined system. The method differs from traditional steepest descent methods by considering the conditions when defining the corresponding Sobolev space. The descent method converges to the unique solution to the differential equation so that change in condition values is minimal. The system has a solution if and only if the first iteration of steepest descent satisfies the system. The finite analogue of the descent method is applied to example problems involving finite difference equations. The well-posed problems include a singular ordinary differential equation and Laplace’s equation, each paired with respective Dirichlet-type conditions. The overdetermined problems include a first-order nonsingular ordinary differential equation with Dirichlet-type conditions and the wave equation with both Dirichlet and Neumann conditions. The method is applied in an investigation of the Tricomi equation, a long-studied equation which acts as a prototype of mixed partial differential equations and has application in transonic flow. The Tricomi equation has been studied for at least ninety years, yet necessary and sufficient conditions for existence and uniqueness of solutions on an arbitrary mixed domain remain unknown. The domains ...

**Contributing Partner:**UNT Libraries

**Permallink:**digital.library.unt.edu/ark:/67531/metadc699977/

### Continuous Combinatorics of a Lattice Graph in the Cantor Space

**Date:**2016-5

**Creator:**Krohne, Edward William

**Description:**We present a novel theorem of Borel Combinatorics that sheds light on the types of continuous functions that can be defined on the Cantor space. We specifically consider the part X=F(2ᴳ) from the Cantor space, where the group G is the additive group of integer pairs ℤ². That is, X is the set of aperiodic {0,1} labelings of the two-dimensional infinite lattice graph. We give X the Bernoulli shift action, and this action induces a graph on X in which each connected component is again a two-dimensional lattice graph. It is folklore that no continuous (indeed, Borel) function provides a two-coloring of the graph on X, despite the fact that any finite subgraph of X is bipartite. Our main result offers a much more complete analysis of continuous functions on this space. We construct a countable collection of finite graphs, each consisting of twelve "tiles", such that for any property P (such as "two-coloring") that is locally recognizable in the proper sense, a continuous function with property P exists on X if and only if a function with a corresponding property P' exists on one of the graphs in the collection. We present the theorem, and give several applications.

**Contributing Partner:**UNT Libraries

**Permallink:**digital.library.unt.edu/ark:/67531/metadc849680/

### Contributions to Descriptive Set Theory

**Date:**August 2015

**Creator:**Atmai, Rachid

**Description:**In this dissertation we study closure properties of pointclasses, scales on sets of reals and the models L[T2n], which are very natural canonical inner models of ZFC. We first characterize projective-like hierarchies by their associated ordinals. This solves a conjecture of Steel and a conjecture of Kechris, Solovay, and Steel. The solution to the first conjecture allows us in particular to reprove a strong partition property result on the ordinal of a Steel pointclass and derive a new boundedness principle which could be useful in the study of the cardinal structure of L(R). We then develop new methods which produce lightface scales on certain sets of reals. The methods are inspired by Jackson’s proof of the Kechris-Martin theorem. We then generalize the Kechris-Martin Theorem to all the Π12n+1 pointclasses using Jackson’s theory of descriptions. This in turns allows us to characterize the sets of reals of a certain initial segment of the models L[T2n]. We then use this characterization and the generalization of Kechris-Martin theorem to show that the L[T2n] are unique. This generalizes previous work of Hjorth. We then characterize the L[T2n] in term of inner models theory, showing that they actually are constructible models over direct limit of ...

**Contributing Partner:**UNT Libraries

**Permallink:**digital.library.unt.edu/ark:/67531/metadc804953/

### Descriptive Set Theory and Measure Theory in Locally Compact and Non-locally Compact Groups

**Date:**May 2013

**Creator:**Cohen, Michael Patrick

**Description:**In this thesis we study descriptive-set-theoretic and measure-theoretic properties of Polish groups, with a thematic emphasis on the contrast between groups which are locally compact and those which are not. The work is divided into three major sections. In the first, working jointly with Robert Kallman, we resolve a conjecture of Gleason regarding the Polish topologization of abstract groups of homeomorphisms. We show that Gleason's conjecture is false, and its conclusion is only true when the hypotheses are considerably strengthened. Along the way we discover a new automatic continuity result for a class of functions which behave like but are distinct from functions of Baire class 1. In the second section we consider the descriptive complexity of those subsets of the permutation group S? which arise naturally from the classical Levy-Steinitz series rearrangement theorem. We show that for any conditionally convergent series of vectors in Euclidean space, the sets of permutations which make the series diverge, and diverge properly, are ?03-complete. In the last section we study the phenomenon of Haar null sets a la Christensen, and the closely related notion of openly Haar null sets. We identify and correct a minor error in the proof of Mycielski that a ...

**Contributing Partner:**UNT Libraries

**Permallink:**digital.library.unt.edu/ark:/67531/metadc271792/

### Determinacy-related Consequences on Limit Superiors

**Date:**May 2013

**Creator:**Walker, Daniel

**Description:**Laczkovich proved from ZF that, given a countable sequence of Borel sets on a perfect Polish space, if the limit superior along every subsequence was uncountable, then there was a particular subsequence whose intersection actually contained a perfect subset. Komjath later expanded the result to hold for analytic sets. In this paper, by adding AD and sometimes V=L(R) to our assumptions, we will extend the result further. This generalization will include the increasing of the length of the sequence to certain uncountable regular cardinals as well as removing any descriptive requirements on the sets.

**Contributing Partner:**UNT Libraries

**Permallink:**digital.library.unt.edu/ark:/67531/metadc271913/

### Equivalence Classes of Subquotients of Pseudodifferential Operator Modules on the Line

**Date:**August 2012

**Creator:**Larsen, Jeannette M.

**Description:**Certain subquotients of Vec(R)-modules of pseudodifferential operators from one tensor density module to another are categorized, giving necessary and sufficient conditions under which two such subquotients are equivalent as Vec(R)-representations. These subquotients split under the projective subalgebra, a copy of ????2, when the members of their composition series have distinct Casimir eigenvalues. Results were obtained using the explicit description of the action of Vec(R) with respect to this splitting. In the length five case, the equivalence classes of the subquotients are determined by two invariants. In an appropriate coordinate system, the level curves of one of these invariants are a pencil of conics, and those of the other are a pencil of cubics.

**Contributing Partner:**UNT Libraries

**Permallink:**digital.library.unt.edu/ark:/67531/metadc149627/