## You limited your search to:

**Partner:**UNT Libraries

**Department:**Department of Mathematics

**Decade:**2000-2009

**Language:**English

**Collection:**UNT Theses and Dissertations

### Analysis Of Sequential Barycenter Random Probability Measures via Discrete Constructions

**Date:**December 2002

**Creator:**Valdes, LeRoy I.

**Description:**Hill and Monticino (1998) introduced a constructive method for generating random probability measures with a prescribed mean or distribution on the mean. The method involves sequentially generating an array of barycenters that uniquely defines a probability measure. This work analyzes statistical properties of the measures generated by sequential barycenter array constructions. Specifically, this work addresses how changing the base measures of the construction affects the statististics of measures generated by the SBA construction. A relationship between statistics associated with a finite level version of the SBA construction and the full construction is developed. Monte Carlo statistical experiments are used to simulate the effect changing base measures has on the statistics associated with the finite level construction.

**Contributing Partner:**UNT Libraries

**Permallink:**digital.library.unt.edu/ark:/67531/metadc3304/

### Applications in Fixed Point Theory

**Date:**December 2005

**Creator:**Farmer, Matthew Ray

**Description:**Banach's contraction principle is probably one of the most important theorems in fixed point theory. It has been used to develop much of the rest of fixed point theory. Another key result in the field is a theorem due to Browder, Göhde, and Kirk involving Hilbert spaces and nonexpansive mappings. Several applications of Banach's contraction principle are made. Some of these applications involve obtaining new metrics on a space, forcing a continuous map to have a fixed point, and using conditions on the boundary of a closed ball in a Banach space to obtain a fixed point. Finally, a development of the theorem due to Browder et al. is given with Hilbert spaces replaced by uniformly convex Banach spaces.

**Contributing Partner:**UNT Libraries

**Permallink:**digital.library.unt.edu/ark:/67531/metadc4971/

### Around the Fibonacci Numeration System

**Date:**May 2007

**Creator:**Edson, Marcia Ruth

**Description:**Let 1, 2, 3, 5, 8, … denote the Fibonacci sequence beginning with 1 and 2, and then setting each subsequent number to the sum of the two previous ones. Every positive integer n can be expressed as a sum of distinct Fibonacci numbers in one or more ways. Setting R(n) to be the number of ways n can be written as a sum of distinct Fibonacci numbers, we exhibit certain regularity properties of R(n), one of which is connected to the Euler φ-function. In addition, using a theorem of Fine and Wilf, we give a formula for R(n) in terms of binomial coefficients modulo two.

**Contributing Partner:**UNT Libraries

**Permallink:**digital.library.unt.edu/ark:/67531/metadc3676/

### Borel Determinacy and Metamathematics

**Date:**December 2001

**Creator:**Bryant, Ross

**Description:**Borel determinacy states that if G(T;X) is a game and X is Borel, then G(T;X) is determined. Proved by Martin in 1975, Borel determinacy is a theorem of ZFC set theory, and is, in fact, the best determinacy result in ZFC. However, the proof uses sets of high set theoretic type (N1 many power sets of ω). Friedman proved in 1971 that these sets are necessary by showing that the Axiom of Replacement is necessary for any proof of Borel Determinacy. To prove this, Friedman produces a model of ZC and a Borel set of Turing degrees that neither contains nor omits a cone; so by another theorem of Martin, Borel Determinacy is not a theorem of ZC. This paper contains three main sections: Martin's proof of Borel Determinacy; a simpler example of Friedman's result, namely, (in ZFC) a coanalytic set of Turing degrees that neither contains nor omits a cone; and finally, the Friedman result.

**Contributing Partner:**UNT Libraries

**Permallink:**digital.library.unt.edu/ark:/67531/metadc3061/

### A Characterization of Homeomorphic Bernoulli Trial Measures.

**Date:**August 2006

**Creator:**Yingst, Andrew Q.

**Description:**We give conditions which, given two Bernoulli trial measures, determine whether there exists a homeomorphism of Cantor space which sends one measure to the other, answering a question of Oxtoby. We then provide examples, relating these results to the notions of good and refinable measures on Cantor space.

**Contributing Partner:**UNT Libraries

**Permallink:**digital.library.unt.edu/ark:/67531/metadc5331/

### Characterizations of Continua of Finite Degree

**Date:**August 2006

**Creator:**Irwin, Shana

**Description:**In this thesis, some characterizations of continua of finite degree are given. It turns out that being of finite degree (by formal definition) can be described by saying there exists an equivalent metric in which Hausdorff linear measure of the continuum is finite. I discuss this result in detail.

**Contributing Partner:**UNT Libraries

**Permallink:**digital.library.unt.edu/ark:/67531/metadc5367/

### A Collapsing Result Using the Axiom of Determinancy and the Theory of Possible Cofinalities

**Date:**May 2001

**Creator:**May, Russell J.

**Description:**Assuming the axiom of determinacy, we give a new proof of the strong partition relation on ω1. Further, we present a streamlined proof that J<λ+(a) (the ideal of sets which force cof Π α < λ) is generated from J<λ+(a) by adding a singleton. Combining these results with a polarized partition relation on ω1

**Contributing Partner:**UNT Libraries

**Permallink:**digital.library.unt.edu/ark:/67531/metadc2789/

### Compact Operators and the Schrödinger Equation

**Date:**December 2006

**Creator:**Kazemi, Parimah

**Description:**In this thesis I look at the theory of compact operators in a general Hilbert space, as well as the inverse of the Hamiltonian operator in the specific case of L2[a,b]. I show that this inverse is a compact, positive, and bounded linear operator. Also the eigenfunctions of this operator form a basis for the space of continuous functions as a subspace of L2[a,b]. A numerical method is proposed to solve for these eigenfunctions when the Hamiltonian is considered as an operator on Rn. The paper finishes with a discussion of examples of Schrödinger equations and the solutions.

**Contributing Partner:**UNT Libraries

**Permallink:**digital.library.unt.edu/ark:/67531/metadc5453/

### Complemented Subspaces of Bounded Linear Operators

**Date:**August 2003

**Creator:**Bahreini Esfahani, Manijeh

**Description:**For many years mathematicians have been interested in the problem of whether an operator ideal is complemented in the space of all bounded linear operators. In this dissertation the complementation of various classes of operators in the space of all bounded linear operators is considered. This paper begins with a preliminary discussion of linear bounded operators as well as operator ideals. Let L(X, Y ) be a Banach space of all bounded linear operator between Banach spaces X and Y , K(X, Y ) be the space of all compact operators, and W(X, Y ) be the space of all weakly compact operators. We denote space all operator ideals by O.

**Contributing Partner:**UNT Libraries

**Permallink:**digital.library.unt.edu/ark:/67531/metadc4349/

### A Computation of Partial Isomorphism Rank on Ordinal Structures

**Date:**August 2006

**Creator:**Bryant, Ross

**Description:**We compute the partial isomorphism rank, in the sense Scott and Karp, of a pair of ordinal structures using an Ehrenfeucht-Fraisse game. A complete formula is proven by induction given any two arbitrary ordinals written in Cantor normal form.

**Contributing Partner:**UNT Libraries

**Permallink:**digital.library.unt.edu/ark:/67531/metadc5387/