You limited your search to:

  Partner: UNT Libraries
 Degree Discipline: Computer Science
 Degree Level: Doctoral
 Collection: UNT Theses and Dissertations
3D Reconstruction Using Lidar and Visual Images
In this research, multi-perspective image registration using LiDAR and visual images was considered. 2D-3D image registration is a difficult task because it requires the extraction of different semantic features from each modality. This problem is solved in three parts. The first step involves detection and extraction of common features from each of the data sets. The second step consists of associating the common features between two different modalities. Traditional methods use lines or orthogonal corners as common features. The third step consists of building the projection matrix. Many existing methods use global positing system (GPS) or inertial navigation system (INS) for an initial estimate of the camera pose. However, the approach discussed herein does not use GPS, INS, or any such devices for initial estimate; hence the model can be used in places like the lunar surface or Mars where GPS or INS are not available. A variation of the method is also described, which does not require strong features from both images but rather uses intensity gradients in the image. This can be useful when one image does not have strong features (such as lines) or there are too many extraneous features. digital.library.unt.edu/ark:/67531/metadc177193/
Adaptive Planning and Prediction in Agent-Supported Distributed Collaboration.
Agents that act as user assistants will become invaluable as the number of information sources continue to proliferate. Such agents can support the work of users by learning to automate time-consuming tasks and filter information to manageable levels. Although considerable advances have been made in this area, it remains a fertile area for further development. One application of agents under careful scrutiny is the automated negotiation of conflicts between different user's needs and desires. Many techniques require explicit user models in order to function. This dissertation explores a technique for dynamically constructing user models and the impact of using them to anticipate the need for negotiation. Negotiation is reduced by including an advising aspect to the agent that can use this anticipation of conflict to adjust user behavior. digital.library.unt.edu/ark:/67531/metadc4702/
An Algorithm for the PLA Equivalence Problem
The Programmable Logic Array (PLA) has been widely used in the design of VLSI circuits and systems because of its regularity, flexibility, and simplicity. The equivalence problem is typically to verify that the final description of a circuit is functionally equivalent to its initial description. Verifying the functional equivalence of two descriptions is equivalent to proving their logical equivalence. This problem of pure logic is essential to circuit design. The most widely used technique to solve the problem is based on Binary Decision Diagram or BDD, proposed by Bryant in 1986. Unfortunately, BDD requires too much time and space to represent moderately large circuits for equivalence testing. We design and implement a new algorithm called the Cover-Merge Algorithm for the equivalence problem based on a divide-and-conquer strategy using the concept of cover and a derivational method. We prove that the algorithm is sound and complete. Because of the NP-completeness of the problem, we emphasize simplifications to reduce the search space or to avoid redundant computations. Simplification techniques are incorporated into the algorithm as an essential part to speed up the the derivation process. Two different sets of heuristics are developed for two opposite goals: one for the proof of equivalence and the other for its disproof. Experiments on a large scale of data have shown that big speed-ups can be achieved by prioritizing the heuristics and by choosing the most favorable one at each iteration of the Algorithm. Results are compared with those for BDD on standard benchmark problems as well as on random PLAs to perform an unbiased way of testing algorithms. It has been shown that the Cover-Merge Algorithm outperforms BDD in nearly all problem instances in terms of time and space. The algorithm has demonstrated fairly stabilized and practical performances especially for big PLAs under a wide range of conditions, while BDD shows poor performance because of its memory greedy representation scheme without adequate simplification. digital.library.unt.edu/ark:/67531/metadc278922/
Algorithms for Efficient Utilization of Wireless Bandwidth and to Provide Quality-of-Service in Wireless Networks
This thesis presents algorithms to utilize the wireless bandwidth efficiently and at the same time meet the quality of service (QoS) requirements of the users. In the proposed algorithms we present an adaptive frame structure based upon the airlink frame loss probability and control the admission of call requests into the system based upon the load on the system and the QoS requirements of the incoming call requests. The performance of the proposed algorithms is studied by developing analytical formulations and simulation experiments. Finally we present an admission control algorithm which uses an adaptive delay computation algorithm to compute the queuing delay for each class of traffic and adapts the service rate and the reliability in the estimates based upon the deviation in the expected and obtained performance. We study the performance of the call admission control algorithm by simulation experiments. Simulation results for the adaptive frame structure algorithm show an improvement in the number of users in the system but there is a drop in the system throughput. In spite of the lower throughput the adaptive frame structure algorithm has fewer QoS delay violations. The adaptive call admission control algorithm adapts the call dropping probability of different classes of traffic and optimizes the system performance w.r.t the number of calls dropped and the reliability in meeting the QoS promised when the call is admitted into the system. digital.library.unt.edu/ark:/67531/metadc2635/
Automatic Speech Recognition Using Finite Inductive Sequences
This dissertation addresses the general problem of recognition of acoustic signals which may be derived from speech, sonar, or acoustic phenomena. The specific problem of recognizing speech is the main focus of this research. The intention is to design a recognition system for a definite number of discrete words. For this purpose specifically, eight isolated words from the T1MIT database are selected. Four medium length words "greasy," "dark," "wash," and "water" are used. In addition, four short words are considered "she," "had," "in," and "all." The recognition system addresses the following issues: filtering or preprocessing, training, and decision-making. The preprocessing phase uses linear predictive coding of order 12. Following the filtering process, a vector quantization method is used to further reduce the input data and generate a finite inductive sequence of symbols representative of each input signal. The sequences generated by the vector quantization process of the same word are factored, and a single ruling or reference template is generated and stored in a codebook. This system introduces a new modeling technique which relies heavily on the basic concept that all finite sequences are finitely inductive. This technique is used in the training stage. In order to accommodate the variabilities in speech, the training is performed casualty, and a large number of training speakers is used from eight different dialect regions. Hence, a speaker independent recognition system is realized. The matching process compares the incoming speech with each of the templates stored, and a closeness ration is computed. A ratio table is generated anH the matching word that corresponds to the smallest ratio (i.e. indicating that the ruling has removed most of the symbols) is selected. Promising results were obtained for isolated words, and the recognition rates ranged between 50% and 100%. digital.library.unt.edu/ark:/67531/metadc277749/
Autonomic Failure Identification and Diagnosis for Building Dependable Cloud Computing Systems
The increasingly popular cloud-computing paradigm provides on-demand access to computing and storage with the appearance of unlimited resources. Users are given access to a variety of data and software utilities to manage their work. Users rent virtual resources and pay for only what they use. In spite of the many benefits that cloud computing promises, the lack of dependability in shared virtualized infrastructures is a major obstacle for its wider adoption, especially for mission-critical applications. Virtualization and multi-tenancy increase system complexity and dynamicity. They introduce new sources of failure degrading the dependability of cloud computing systems. To assure cloud dependability, in my dissertation research, I develop autonomic failure identification and diagnosis techniques that are crucial for understanding emergent, cloud-wide phenomena and self-managing resource burdens for cloud availability and productivity enhancement. We study the runtime cloud performance data collected from a cloud test-bed and by using traces from production cloud systems. We define cloud signatures including those metrics that are most relevant to failure instances. We exploit profiled cloud performance data in both time and frequency domain to identify anomalous cloud behaviors and leverage cloud metric subspace analysis to automate the diagnosis of observed failures. We implement a prototype of the anomaly identification system and conduct the experiments in an on-campus cloud computing test-bed and by using the Google datacenter traces. Our experimental results show that our proposed anomaly detection mechanism can achieve 93% detection sensitivity while keeping the false positive rate as low as 6.1% and outperform other tested anomaly detection schemes. In addition, the anomaly detector adapts itself by recursively learning from these newly verified detection results to refine future detection. digital.library.unt.edu/ark:/67531/metadc499993/
Bayesian Probabilistic Reasoning Applied to Mathematical Epidemiology for Predictive Spatiotemporal Analysis of Infectious Diseases
Abstract Probabilistic reasoning under uncertainty suits well to analysis of disease dynamics. The stochastic nature of disease progression is modeled by applying the principles of Bayesian learning. Bayesian learning predicts the disease progression, including prevalence and incidence, for a geographic region and demographic composition. Public health resources, prioritized by the order of risk levels of the population, will efficiently minimize the disease spread and curtail the epidemic at the earliest. A Bayesian network representing the outbreak of influenza and pneumonia in a geographic region is ported to a newer region with different demographic composition. Upon analysis for the newer region, the corresponding prevalence of influenza and pneumonia among the different demographic subgroups is inferred for the newer region. Bayesian reasoning coupled with disease timeline is used to reverse engineer an influenza outbreak for a given geographic and demographic setting. The temporal flow of the epidemic among the different sections of the population is analyzed to identify the corresponding risk levels. In comparison to spread vaccination, prioritizing the limited vaccination resources to the higher risk groups results in relatively lower influenza prevalence. HIV incidence in Texas from 1989-2002 is analyzed using demographic based epidemic curves. Dynamic Bayesian networks are integrated with probability distributions of HIV surveillance data coupled with the census population data to estimate the proportion of HIV incidence among the different demographic subgroups. Demographic based risk analysis lends to observation of varied spectrum of HIV risk among the different demographic subgroups. A methodology using hidden Markov models is introduced that enables to investigate the impact of social behavioral interactions in the incidence and prevalence of infectious diseases. The methodology is presented in the context of simulated disease outbreak data for influenza. Probabilistic reasoning analysis enhances the understanding of disease progression in order to identify the critical points of surveillance, control and prevention. Public health resources, prioritized by the order of risk levels of the population, will efficiently minimize the disease spread and curtail the epidemic at the earliest. digital.library.unt.edu/ark:/67531/metadc5302/
Boosting for Learning From Imbalanced, Multiclass Data Sets
Access: Use of this item is restricted to the UNT Community.
In many real-world applications, it is common to have uneven number of examples among multiple classes. The data imbalance, however, usually complicates the learning process, especially for the minority classes, and results in deteriorated performance. Boosting methods were proposed to handle the imbalance problem. These methods need elongated training time and require diversity among the classifiers of the ensemble to achieve improved performance. Additionally, extending the boosting method to handle multi-class data sets is not straightforward. Examples of applications that suffer from imbalanced multi-class data can be found in face recognition, where tens of classes exist, and in capsule endoscopy, which suffers massive imbalance between the classes. This dissertation introduces RegBoost, a new boosting framework to address the imbalanced, multi-class problems. This method applies a weighted stratified sampling technique and incorporates a regularization term that accommodates multi-class data sets and automatically determines the error bound of each base classifier. The regularization parameter penalizes the classifier when it misclassifies instances that were correctly classified in the previous iteration. The parameter additionally reduces the bias towards majority classes. Experiments are conducted using 12 diverse data sets with moderate to high imbalance ratios. The results demonstrate superior performance of the proposed method compared to several state-of-the-art algorithms for imbalanced, multi-class classification problems. More importantly, the sensitivity improvement of the minority classes using RegBoost is accompanied with the improvement of the overall accuracy for all classes. With unpredictability regularization, a diverse group of classifiers are created and the maximum accuracy improvement reaches above 24%. Using stratified undersampling, RegBoost exhibits the best efficiency. The reduction in computational cost is significant reaching above 50%. As the volume of training data increase, the gain of efficiency with the proposed method becomes more significant. digital.library.unt.edu/ark:/67531/metadc407775/
Computational Complexity of Hopfield Networks
There are three main results in this dissertation. They are PLS-completeness of discrete Hopfield network convergence with eight different restrictions, (degree 3, bipartite and degree 3, 8-neighbor mesh, dual of the knight's graph, hypercube, butterfly, cube-connected cycles and shuffle-exchange), exponential convergence behavior of discrete Hopfield network, and simulation of Turing machines by discrete Hopfield Network. digital.library.unt.edu/ark:/67531/metadc278272/
Convexity-Preserving Scattered Data Interpolation
Surface fitting methods play an important role in many scientific fields as well as in computer aided geometric design. The problem treated here is that of constructing a smooth surface that interpolates data values associated with scattered nodes in the plane. The data is said to be convex if there exists a convex interpolant. The problem of convexity-preserving interpolation is to determine if the data is convex, and construct a convex interpolant if it exists. digital.library.unt.edu/ark:/67531/metadc277609/
Design and Implementation of Large-Scale Wireless Sensor Networks for Environmental Monitoring Applications
Environmental monitoring represents a major application domain for wireless sensor networks (WSN). However, despite significant advances in recent years, there are still many challenging issues to be addressed to exploit the full potential of the emerging WSN technology. In this dissertation, we introduce the design and implementation of low-power wireless sensor networks for long-term, autonomous, and near-real-time environmental monitoring applications. We have developed an out-of-box solution consisting of a suite of software, protocols and algorithms to provide reliable data collection with extremely low power consumption. Two wireless sensor networks based on the proposed solution have been deployed in remote field stations to monitor soil moisture along with other environmental parameters. As parts of the ever-growing environmental monitoring cyberinfrastructure, these networks have been integrated into the Texas Environmental Observatory system for long-term operation. Environmental measurement and network performance results are presented to demonstrate the capability, reliability and energy-efficiency of the network. digital.library.unt.edu/ark:/67531/metadc28493/
Direct Online/Offline Digital Signature Schemes.
Online/offline signature schemes are useful in many situations, and two such scenarios are considered in this dissertation: bursty server authentication and embedded device authentication. In this dissertation, new techniques for online/offline signing are introduced, those are applied in a variety of ways for creating online/offline signature schemes, and five different online/offline signature schemes that are proved secure under a variety of models and assumptions are proposed. Two of the proposed five schemes have the best offline or best online performance of any currently known technique, and are particularly well-suited for the scenarios that are considered in this dissertation. To determine if the proposed schemes provide the expected practical improvements, a series of experiments were conducted comparing the proposed schemes with each other and with other state-of-the-art schemes in this area, both on a desktop class computer, and under AVR Studio, a simulation platform for an 8-bit processor that is popular for embedded systems. Under AVR Studio, the proposed SGE scheme using a typical key size for the embedded device authentication scenario, can complete the offline phase in about 24 seconds and then produce a signature (the online phase) in 15 milliseconds, which is the best offline performance of any known signature scheme that has been proven secure in the standard model. In the tests on a desktop class computer, the proposed SGS scheme, which has the best online performance and is designed for the bursty server authentication scenario, generated 469,109 signatures per second, and the Schnorr scheme (the next best scheme in terms of online performance) generated only 223,548 signatures. The experimental results demonstrate that the SGE and SGS schemes are the most efficient techniques for embedded device authentication and bursty server authentication, respectively. digital.library.unt.edu/ark:/67531/metadc9717/
Efficient Algorithms and Framework for Bandwidth Allocation, Quality-of-Service Provisioning and Location Management in Mobile Wireless Computing
The fusion of computers and communications has promised to herald the age of information super-highway over high speed communication networks where the ultimate goal is to enable a multitude of users at any place, access information from anywhere and at any time. This, in a nutshell, is the goal envisioned by the Personal Communication Services (PCS) and Xerox's ubiquitous computing. In view of the remarkable growth of the mobile communication users in the last few years, the radio frequency spectrum allocated by the FCC (Federal Communications Commission) to this service is still very limited and the usable bandwidth is by far much less than the expected demand, particularly in view of the emergence of the next generation wireless multimedia applications like video-on-demand, WWW browsing, traveler information systems etc. Proper management of available spectrum is necessary not only to accommodate these high bandwidth applications, but also to alleviate problems due to sudden explosion of traffic in so called hot cells. In this dissertation, we have developed simple load balancing techniques to cope with the problem of tele-traffic overloads in one or more hot cells in the system. The objective is to ease out the high channel demand in hot cells by borrowing channels from suitable cold cells and by proper assignment (or, re-assignment) of the channels among the users. We also investigate possible ways of improving system capacity by rescheduling bandwidth in case of wireless multimedia traffic. In our proposed scheme, traffic using multiple channels releases one or more channels to increase the carried traffic or throughput in the system. Two orthogonal QoS parameters, called carried traffic and bandwidth degradation, are identified and a cost function describing the total revenue earned by the system from a bandwidth degradation and call admission policy, is formulated. A channel sharing scheme is proposed for co-existing real-time and non-real-time traffic and analyzed using a Markov modulated Poisson process (MMPP) based queueing model. The location management problem in mobile computing deals with the problem of a combined management of location updates and paging in the network, both of which consume scarce network resources like bandwidth, CPU cycles etc. An easily implementable location update scheme is developed which considers per-user mobility pattern on top of the conventional location area based approach and computes an update strategy for each user by minimizing the average location management cost. The cost optimization problem is elegantly solved using a genetic algorithm. digital.library.unt.edu/ark:/67531/metadc278885/
Efficient Linked List Ranking Algorithms and Parentheses Matching as a New Strategy for Parallel Algorithm Design
The goal of a parallel algorithm is to solve a single problem using multiple processors working together and to do so in an efficient manner. In this regard, there is a need to categorize strategies in order to solve broad classes of problems with similar structures and requirements. In this dissertation, two parallel algorithm design strategies are considered: linked list ranking and parentheses matching. digital.library.unt.edu/ark:/67531/metadc278153/
Exon/Intron Discrimination Using the Finite Induction Pattern Matching Technique
DNA sequence analysis involves precise discrimination of two of the sequence's most important components: exons and introns. Exons encode the proteins that are responsible for almost all the functions in a living organism. Introns interrupt the sequence coding for a protein and must be removed from primary RNA transcripts before translation to protein can occur. A pattern recognition technique called Finite Induction (FI) is utilized to study the language of exons and introns. FI is especially suited for analyzing and classifying large amounts of data representing sequences of interest. It requires no biological information and employs no statistical functions. Finite Induction is applied to the exon and intron components of DNA by building a collection of rules based upon what it finds in the sequences it examines. It then attempts to match the known rule patterns with new rules formed as a result of analyzing a new sequence. A high number of matches predict a probable close relationship between the two sequences; a low number of matches signifies a large amount of difference between the two. This research demonstrates FI to be a viable tool for measurement when known patterns are available for the formation of rule sets. digital.library.unt.edu/ark:/67531/metadc277629/
Exploring Trusted Platform Module Capabilities: A Theoretical and Experimental Study
Trusted platform modules (TPMs) are hardware modules that are bound to a computer's motherboard, that are being included in many desktops and laptops. Augmenting computers with these hardware modules adds powerful functionality in distributed settings, allowing us to reason about the security of these systems in new ways. In this dissertation, I study the functionality of TPMs from a theoretical as well as an experimental perspective. On the theoretical front, I leverage various features of TPMs to construct applications like random oracles that are impossible to implement in a standard model of computation. Apart from random oracles, I construct a new cryptographic primitive which is basically a non-interactive form of the standard cryptographic primitive of oblivious transfer. I apply this new primitive to secure mobile agent computations, where interaction between various entities is typically required to ensure security. I prove these constructions are secure using standard cryptographic techniques and assumptions. To test the practicability of these constructions and their applications, I performed an experimental study, both on an actual TPM and a software TPM simulator which has been enhanced to make it reflect timings from a real TPM. This allowed me to benchmark the performance of the applications and test the feasibility of the proposed extensions to standard TPMs. My tests also show that these constructions are practical. digital.library.unt.edu/ark:/67531/metadc6101/
Flexible Digital Authentication Techniques
Abstract This dissertation investigates authentication techniques in some emerging areas. Specifically, authentication schemes have been proposed that are well-suited for embedded systems, and privacy-respecting pay Web sites. With embedded systems, a person could own several devices which are capable of communication and interaction, but these devices use embedded processors whose computational capabilities are limited as compared to desktop computers. Examples of this scenario include entertainment devices or appliances owned by a consumer, multiple control and sensor systems in an automobile or airplane, and environmental controls in a building. An efficient public key cryptosystem has been devised, which provides a complete solution to an embedded system, including protocols for authentication, authenticated key exchange, encryption, and revocation. The new construction is especially suitable for the devices with constrained computing capabilities and resources. Compared with other available authentication schemes, such as X.509, identity-based encryption, etc, the new construction provides unique features such as simplicity, efficiency, forward secrecy, and an efficient re-keying mechanism. In the application scenario for a pay Web site, users may be sensitive about their privacy, and do not wish their behaviors to be tracked by Web sites. Thus, an anonymous authentication scheme is desirable in this case. That is, a user can prove his/her authenticity without revealing his/her identity. On the other hand, the Web site owner would like to prevent a bunch of users from sharing a single subscription while hiding behind user anonymity. The Web site should be able to detect these possible malicious behaviors, and exclude corrupted users from future service. This dissertation extensively discusses anonymous authentication techniques, such as group signature, direct anonymous attestation, and traceable signature. Three anonymous authentication schemes have been proposed, which include a group signature scheme with signature claiming and variable linkability, a scheme for direct anonymous attestation in trusted computing platforms with sign and verify protocols nearly seven times more efficient than the current solution, and a state-of-the-art traceable signature scheme with support for variable anonymity. These three schemes greatly advance research in the area of anonymous authentication. The authentication techniques presented in this dissertation are based on common mathematical and cryptographical foundations, sharing similar security assumptions. We call them flexible digital authentication schemes. digital.library.unt.edu/ark:/67531/metadc5277/
A Framework for Analyzing and Optimizing Regional Bio-Emergency Response Plans
The presence of naturally occurring and man-made public health threats necessitate the design and implementation of mitigation strategies, such that adequate response is provided in a timely manner. Since multiple variables, such as geographic properties, resource constraints, and government mandated time-frames must be accounted for, computational methods provide the necessary tools to develop contingency response plans while respecting underlying data and assumptions. A typical response scenario involves the placement of points of dispensing (PODs) in the affected geographic region to supply vaccines or medications to the general public. Computational tools aid in the analysis of such response plans, as well as in the strategic placement of PODs, such that feasible response scenarios can be developed. Due to the sensitivity of bio-emergency response plans, geographic information, such as POD locations, must be kept confidential. The generation of synthetic geographic regions allows for the development of emergency response plans on non-sensitive data, as well as for the study of the effects of single geographic parameters. Further, synthetic representations of geographic regions allow for results to be published and evaluated by the scientific community. This dissertation presents methodology for the analysis of bio-emergency response plans, methods for plan optimization, as well as methodology for the generation of synthetic geographic regions. digital.library.unt.edu/ark:/67531/metadc33200/
Framework for Evaluating Dynamic Memory Allocators Including a New Equivalence Class Based Cache-conscious Allocator
Software applications’ performance is hindered by a variety of factors, but most notably by the well-known CPU-memory speed gap (often known as the memory wall). This results in the CPU sitting idle waiting for data to be brought from memory to processor caches. The addressing used by caches cause non-uniform accesses to various cache sets. The non-uniformity is due to several reasons, including how different objects are accessed by the code and how the data objects are located in memory. Memory allocators determine where dynamically created objects are placed, thus defining addresses and their mapping to cache locations. It is important to evaluate how different allocators behave with respect to the localities of the created objects. Most allocators use a single attribute, the size, of an object in making allocation decisions. Additional attributes such as the placement with respect to other objects, or specific cache area may lead to better use of cache memories. In this dissertation, we proposed and implemented a framework that allows for the development and evaluation of new memory allocation techniques. At the root of the framework is a memory tracing tool called Gleipnir, which provides very detailed information about every memory access, and relates it back to source level objects. Using the traces from Gleipnir, we extended a commonly used cache simulator for generating detailed cache statistics: per function, per data object, per cache line, and identify specific data objects that are conflicting with each other. The utility of the framework is demonstrated with a new memory allocator known as equivalence class allocator. The new allocator allows users to specify cache sets, in addition to object size, where the objects should be placed. We compare this new allocator with two well-known allocators, viz., Doug Lea and Pool allocators. digital.library.unt.edu/ark:/67531/metadc500151/
GPS CaPPture: a System for GPS Trajectory Collection, Processing, and Destination Prediction
In the United States, smartphone ownership surpassed 69.5 million in February 2011 with a large portion of those users (20%) downloading applications (apps) that enhance the usability of a device by adding additional functionality. a large percentage of apps are written specifically to utilize the geographical position of a mobile device. One of the prime factors in developing location prediction models is the use of historical data to train such a model. with larger sets of training data, prediction algorithms become more accurate; however, the use of historical data can quickly become a downfall if the GPS stream is not collected or processed correctly. Inaccurate or incomplete or even improperly interpreted historical data can lead to the inability to develop accurately performing prediction algorithms. As GPS chipsets become the standard in the ever increasing number of mobile devices, the opportunity for the collection of GPS data increases remarkably. the goal of this study is to build a comprehensive system that addresses the following challenges: (1) collection of GPS data streams in a manner such that the data is highly usable and has a reduction in errors; (2) processing and reduction of the collected data in order to prepare it and make it highly usable for the creation of prediction algorithms; (3) creation of prediction/labeling algorithms at such a level that they are viable for commercial use. This study identifies the key research problems toward building the CaPPture (collection, processing, prediction) system. digital.library.unt.edu/ark:/67531/metadc115089/
Group-EDF: A New Approach and an Efficient Non-Preemptive Algorithm for Soft Real-Time Systems
Hard real-time systems in robotics, space and military missions, and control devices are specified with stringent and critical time constraints. On the other hand, soft real-time applications arising from multimedia, telecommunications, Internet web services, and games are specified with more lenient constraints. Real-time systems can also be distinguished in terms of their implementation into preemptive and non-preemptive systems. In preemptive systems, tasks are often preempted by higher priority tasks. Non-preemptive systems are gaining interest for implementing soft-real applications on multithreaded platforms. In this dissertation, I propose a new algorithm that uses a two-level scheduling strategy for scheduling non-preemptive soft real-time tasks. Our goal is to improve the success ratios of the well-known earliest deadline first (EDF) approach when the load on the system is very high and to improve the overall performance in both underloaded and overloaded conditions. Our approach, known as group-EDF (gEDF), is based on dynamic grouping of tasks with deadlines that are very close to each other, and using a shortest job first (SJF) technique to schedule tasks within the group. I believe that grouping tasks dynamically with similar deadlines and utilizing secondary criteria, such as minimizing the total execution time can lead to new and more efficient real-time scheduling algorithms. I present results comparing gEDF with other real-time algorithms including, EDF, best-effort, and guarantee scheme, by using randomly generated tasks with varying execution times, release times, deadlines and tolerances to missing deadlines, under varying workloads. Furthermore, I implemented the gEDF algorithm in the Linux kernel and evaluated gEDF for scheduling real applications. digital.library.unt.edu/ark:/67531/metadc5317/
High Performance Architecture using Speculative Threads and Dynamic Memory Management Hardware
With the advances in very large scale integration (VLSI) technology, hundreds of billions of transistors can be packed into a single chip. With the increased hardware budget, how to take advantage of available hardware resources becomes an important research area. Some researchers have shifted from control flow Von-Neumann architecture back to dataflow architecture again in order to explore scalable architectures leading to multi-core systems with several hundreds of processing elements. In this dissertation, I address how the performance of modern processing systems can be improved, while attempting to reduce hardware complexity and energy consumptions. My research described here tackles both central processing unit (CPU) performance and memory subsystem performance. More specifically I will describe my research related to the design of an innovative decoupled multithreaded architecture that can be used in multi-core processor implementations. I also address how memory management functions can be off-loaded from processing pipelines to further improve system performance and eliminate cache pollution caused by runtime management functions. digital.library.unt.edu/ark:/67531/metadc5150/
Higher Compression from the Burrows-Wheeler Transform with New Algorithms for the List Update Problem
Burrows-Wheeler compression is a three stage process in which the data is transformed with the Burrows-Wheeler Transform, then transformed with Move-To-Front, and finally encoded with an entropy coder. Move-To-Front, Transpose, and Frequency Count are some of the many algorithms used on the List Update problem. In 1985, Competitive Analysis first showed the superiority of Move-To-Front over Transpose and Frequency Count for the List Update problem with arbitrary data. Earlier studies due to Bitner assumed independent identically distributed data, and showed that while Move-To-Front adapts to a distribution faster, incurring less overwork, the asymptotic costs of Frequency Count and Transpose are less. The improvements to Burrows-Wheeler compression this work covers are increases in the amount, not speed, of compression. Best x of 2x-1 is a new family of algorithms created to improve on Move-To-Front's processing of the output of the Burrows-Wheeler Transform which is like piecewise independent identically distributed data. Other algorithms for both the middle stage of Burrows-Wheeler compression and the List Update problem for which overwork, asymptotic cost, and competitive ratios are also analyzed are several variations of Move One From Front and part of the randomized algorithm Timestamp. The Best x of 2x - 1 family includes Move-To-Front, the part of Timestamp of interest, and Frequency Count. Lastly, a greedy choosing scheme, Snake, switches back and forth as the amount of compression that two List Update algorithms achieves fluctuates, to increase overall compression. The Burrows-Wheeler Transform is based on sorting of contexts. The other improvements are better sorting orders, such as “aeioubcdf...” instead of standard alphabetical “abcdefghi...” on English text data, and an algorithm for computing orders for any data, and Gray code sorting instead of standard sorting. Both techniques lessen the overwork incurred by whatever List Update algorithms are used by reducing the difference between adjacent sorted contexts. digital.library.unt.edu/ark:/67531/metadc2909/
A Highly Fault-Tolerant Distributed Database System with Replicated Data
Because of the high cost and impracticality of a high connectivity network, most recent research in transaction processing has focused on a distributed replicated database system. In such a system, multiple copies of a data item are created and stored at several sites in the network, so that the system is able to tolerate more crash and communication failures and attain higher data availability. However, the multiple copies also introduce a global inconsistency problem, especially in a partitioned network. In this dissertation a tree quorum algorithm is proposed to solve this problem, imposing a logical tree structure along with dynamic system reconfiguration on all the copies of each data item. The proposed algorithm can be viewed as a dynamic voting technique which, with the help of an appropriate concurrency control algorithm, exhibits the major advantages of quorum-based replica control algorithms and of the available copies algorithm, so that a single copy is read for a read operation and a quorum of copies is written for a write operation. In addition, read and write quorums are computed dynamically and independently. As a result expensive read operations, like those that require several copies of a data item to be read in most quorum schemes, are eliminated. Furthermore, the message costs of read and write operations are reduced by the use of smaller quorum sizes. Quorum sizes can be reduced to a constant in a lightly loaded system, and log n in a failure-free network, as well as [n +1/2] in a partitioned network in a heavily loaded system. On average, our algorithm requires fewer messages than the best known tree quorum algorithm, while still maintaining the same upper bound on quorum size. One-copy serializability is guaranteed with higher data availability and highest degree of fault tolerance (up to n - 1 site failures). digital.library.unt.edu/ark:/67531/metadc278403/
An Integrated Architecture for Ad Hoc Grids
Extensive research has been conducted by the grid community to enable large-scale collaborations in pre-configured environments. grid collaborations can vary in scale and motivation resulting in a coarse classification of grids: national grid, project grid, enterprise grid, and volunteer grid. Despite the differences in scope and scale, all the traditional grids in practice share some common assumptions. They support mutually collaborative communities, adopt a centralized control for membership, and assume a well-defined non-changing collaboration. To support grid applications that do not confirm to these assumptions, we propose the concept of ad hoc grids. In the context of this research, we propose a novel architecture for ad hoc grids that integrates a suite of component frameworks. Specifically, our architecture combines the community management framework, security framework, abstraction framework, quality of service framework, and reputation framework. The overarching objective of our integrated architecture is to support a variety of grid applications in a self-controlled fashion with the help of a self-organizing ad hoc community. We introduce mechanisms in our architecture that successfully isolates malicious elements from the community, inherently improving the quality of grid services and extracting deterministic quality assurances from the underlying infrastructure. We also emphasize on the technology-independence of our architecture, thereby offering the requisite platform for technology interoperability. The feasibility of the proposed architecture is verified with a high-quality ad hoc grid implementation. Additionally, we have analyzed the performance and behavior of ad hoc grids with respect to several control parameters. digital.library.unt.edu/ark:/67531/metadc5300/
Intelligent Memory Manager: Towards improving the locality behavior of allocation-intensive applications.
Dynamic memory management required by allocation-intensive (i.e., Object Oriented and linked data structured) applications has led to a large number of research trends. Memory performance due to the cache misses in these applications continues to lag in terms of execution cycles as ever increasing CPU-Memory speed gap continues to grow. Sophisticated prefetcing techniques, data relocations, and multithreaded architectures have tried to address memory latency. These techniques are not completely successful since they require either extra hardware/software in the system or special properties in the applications. Software needed for prefetching and data relocation strategies, aimed to improve cache performance, pollutes the cache so that the technique itself becomes counter-productive. On the other hand, extra hardware complexity needed in multithreaded architectures decelerates CPU's clock, since "Simpler is Faster." This dissertation, directed to seek the cause of poor locality behavior of allocation--intensive applications, studies allocators and their impact on the cache performance of these applications. Our study concludes that service functions, in general, and memory management functions, in particular, entangle with application's code and become the major cause of cache pollution. In this dissertation, we present a novel technique that transfers the allocation and de-allocation functions entirely to a separate processor residing in chip with DRAM (Intelligent Memory Manager). Our empirical results show that, on average, 60% of the cache misses caused by allocation and de-allocation service functions are eliminated using our technique. digital.library.unt.edu/ark:/67531/metadc4491/
Investigating the Extractive Summarization of Literary Novels
Abstract Due to the vast amount of information we are faced with, summarization has become a critical necessity of everyday human life. Given that a large fraction of the electronic documents available online and elsewhere consist of short texts such as Web pages, news articles, scientific reports, and others, the focus of natural language processing techniques to date has been on the automation of methods targeting short documents. We are witnessing however a change: an increasingly larger number of books become available in electronic format. This means that the need for language processing techniques able to handle very large documents such as books is becoming increasingly important. This thesis addresses the problem of summarization of novels, which are long and complex literary narratives. While there is a significant body of research that has been carried out on the task of automatic text summarization, most of this work has been concerned with the summarization of short documents, with a particular focus on news stories. However, novels are different in both length and genre, and consequently different summarization techniques are required. This thesis attempts to close this gap by analyzing a new domain for summarization, and by building unsupervised and supervised systems that effectively take into account the properties of long documents, and outperform the traditional extractive summarization systems typically addressing news genre. digital.library.unt.edu/ark:/67531/metadc103298/
Keywords in the mist: Automated keyword extraction for very large documents and back of the book indexing.
This research addresses the problem of automatic keyphrase extraction from large documents and back of the book indexing. The potential benefits of automating this process are far reaching, from improving information retrieval in digital libraries, to saving countless man-hours by helping professional indexers creating back of the book indexes. The dissertation introduces a new methodology to evaluate automated systems, which allows for a detailed, comparative analysis of several techniques for keyphrase extraction. We introduce and evaluate both supervised and unsupervised techniques, designed to balance the resource requirements of an automated system and the best achievable performance. Additionally, a number of novel features are proposed, including a statistical informativeness measure based on chi statistics; an encyclopedic feature that taps into the vast knowledge base of Wikipedia to establish the likelihood of a phrase referring to an informative concept; and a linguistic feature based on sophisticated semantic analysis of the text using current theories of discourse comprehension. The resulting keyphrase extraction system is shown to outperform the current state of the art in supervised keyphrase extraction by a large margin. Moreover, a fully automated back of the book indexing system based on the keyphrase extraction system was shown to lead to back of the book indexes closely resembling those created by human experts. digital.library.unt.edu/ark:/67531/metadc6118/
A Machine Learning Method Suitable for Dynamic Domains
The efficacy of a machine learning technique is domain dependent. Some machine learning techniques work very well for certain domains but are ill-suited for other domains. One area that is of real-world concern is the flexibility with which machine learning techniques can adapt to dynamic domains. Currently, there are no known reports of any system that can learn dynamic domains, short of starting over (i.e., re-running the program). Starting over is neither time nor cost efficient for real-world production environments. This dissertation studied a method, referred to as Experience Based Learning (EBL), that attempts to deal with conditions related to learning dynamic domains. EBL is an extension of Instance Based Learning methods. The hypothesis of the study related to this research was that the EBL method would automatically adjust to domain changes and still provide classification accuracy similar to methods that require starting over. To test this hypothesis, twelve widely studied machine learning datasets were used. A dynamic domain was simulated by presenting these datasets in an uninterrupted cycle of train, test, and retrain. The order of the twelve datasets and the order of records within each dataset were randomized to control for order biases in each of ten runs. As a result, these methods provided datasets that represent extreme levels of domain change. Using the above datasets, EBL's mean classification accuracies for each dataset were compared to the published static domain results of other machine learning systems. The results indicated that the EBL's system performance was not statistically different (p>0.30) from the other machine learning methods. These results indicate that the EBL system is able to adjust to an extreme level of domain change and yet produce satisfactory results. This finding supports the use of the EBL method in real-world environments that incur rapid changes to both variables and values. digital.library.unt.edu/ark:/67531/metadc278720/
Measuring Semantic Relatedness Using Salient Encyclopedic Concepts
While pragmatics, through its integration of situational awareness and real world relevant knowledge, offers a high level of analysis that is suitable for real interpretation of natural dialogue, semantics, on the other end, represents a lower yet more tractable and affordable linguistic level of analysis using current technologies. Generally, the understanding of semantic meaning in literature has revolved around the famous quote ``You shall know a word by the company it keeps''. In this thesis we investigate the role of context constituents in decoding the semantic meaning of the engulfing context; specifically we probe the role of salient concepts, defined as content-bearing expressions which afford encyclopedic definitions, as a suitable source of semantic clues to an unambiguous interpretation of context. Furthermore, we integrate this world knowledge in building a new and robust unsupervised semantic model and apply it to entail semantic relatedness between textual pairs, whether they are words, sentences or paragraphs. Moreover, we explore the abstraction of semantics across languages and utilize our findings into building a novel multi-lingual semantic relatedness model exploiting information acquired from various languages. We demonstrate the effectiveness and the superiority of our mono-lingual and multi-lingual models through a comprehensive set of evaluations on specialized synthetic datasets for semantic relatedness as well as real world applications such as paraphrase detection and short answer grading. Our work represents a novel approach to integrate world-knowledge into current semantic models and a means to cross the language boundary for a better and more robust semantic relatedness representation, thus opening the door for an improved abstraction of meaning that carries the potential of ultimately imparting understanding of natural language to machines. digital.library.unt.edu/ark:/67531/metadc84212/
A Mechanism for Facilitating Temporal Reasoning in Discrete Event Simulation
This research establishes the feasibility and potential utility of a software mechanism which employs artificial intelligence techniques to enhance the capabilities of standard discrete event simulators. As background, current methods of integrating artificial intelligence with simulation and relevant research are briefly reviewed. digital.library.unt.edu/ark:/67531/metadc278352/
Mediation on XQuery Views
The major goal of information integration is to provide efficient and easy-to-use access to multiple heterogeneous data sources with a single query. At the same time, one of the current trends is to use standard technologies for implementing solutions to complex software problems. In this dissertation, I used XML and XQuery as the standard technologies and have developed an extended projection algorithm to provide a solution to the information integration problem. In order to demonstrate my solution, I implemented a prototype mediation system called Omphalos based on XML related technologies. The dissertation describes the architecture of the system, its metadata, and the process it uses to answer queries. The system uses XQuery expressions (termed metaqueries) to capture complex mappings between global schemas and data source schemas. The system then applies these metaqueries in order to rewrite a user query on a virtual global database (representing the integrated view of the heterogeneous data sources) to a query (termed an outsourced query) on the real data sources. An extended XML document projection algorithm was developed to increase the efficiency of selecting the relevant subset of data from an individual data source to answer the user query. The system applies the projection algorithm to decompose an outsourced query into atomic queries which are each executed on a single data source. I also developed an algorithm to generate integrating queries, which the system uses to compose the answers from the atomic queries into a single answer to the original user query. I present a proof of both the extended XML document projection algorithm and the query integration algorithm. An analysis of the efficiency of the new extended algorithm is also presented. Finally I describe a collaborative schema-matching tool that was implemented to facilitate maintaining metadata. digital.library.unt.edu/ark:/67531/metadc5442/
Mobile agent security through multi-agent cryptographic protocols.
An increasingly promising and widespread topic of research in distributed computing is the mobile agent paradigm: code travelling and performing computations on remote hosts in an autonomous manner. One of the biggest challenges faced by this new paradigm is security. The issue of protecting sensitive code and data carried by a mobile agent against tampering from a malicious host is particularly hard but important. Based on secure multi-party computation, a recent research direction shows the feasibility of a software-only solution to this problem, which had been deemed impossible by some researchers previously. The best result prior to this dissertation is a single-agent protocol which requires the participation of a trusted third party. Our research employs multi-agent protocols to eliminate the trusted third party, resulting in a protocol with minimum trust assumptions. This dissertation presents one of the first formal definitions of secure mobile agent computation, in which the privacy and integrity of the agent code and data as well as the data provided by the host are all protected. We present secure protocols for mobile agent computation against static, semi-honest or malicious adversaries without relying on any third party or trusting any specific participant in the system. The security of our protocols is formally proven through standard proof technique and according to our formal definition of security. Our second result is a more practical agent protocol with strong security against most real-world host attacks. The security features are carefully analyzed, and the practicality is demonstrated through implementation and experimental study on a real-world mobile agent platform. All these protocols rely heavily on well-established cryptographic primitives, such as encrypted circuits, threshold decryption, and oblivious transfer. Our study of these tools yields new contributions to the general field of cryptography. Particularly, we correct a well-known construction of the encrypted circuit and give one of the first provably secure implementations of the encrypted circuit. digital.library.unt.edu/ark:/67531/metadc4473/
Modeling and Analysis of Next Generation 9-1-1 Emergency Medical Dispatch Protocols
Emergency Medical Dispatch Protocols are guidelines that a 9-1-1 dispatcher uses to evaluate the nature of emergency, resources to send and the nature of help provided to the 9-1-1 caller. The current Dispatch Protocols are based on voice only call. But the Next Generation 9-1-1 (NG9-1-1) architecture will allow multimedia emergency calls. In this thesis I analyze and model the Emergency Medical Dispatch Protocols for NG9-1-1 architecture. I have identified various technical aspects to improve the NG9-1-1 Dispatch Protocols. The devices (smartphone) at the caller end have advanced to a point where they can be used to send and receive video, pictures and text. There are sensors embedded in them that can be used for initial diagnosis of the injured person. There is a need to improve the human computer (smartphone) interface to take advantage of technology so that callers can easily make use of various features available to them. The dispatchers at the 9-1-1 call center can make use of these new protocols to improve the quality and the response time. They will have capability of multiple media streams to interact with the caller and the first responders.The specific contributions in this thesis include developing applications that use smartphone sensors. The CPR application uses the smartphone to help administer effective CPR even if the person is not trained. The application makes the CPR process closed loop, i.e., the person who administers the CPR as well as the 9-1-1 operator receive feedback and prompt from the application about the correctness of the CPR. The breathing application analyzes the quality of breathing of the affected person and automatically sends the information to the 9-1-1 operator. In order to improve the Human Computer Interface at the caller and the operator end, I have analyzed Fitts law and extended it so that it can be used to improve the instructions given to a caller. In emergency situations, the caller may be physically or cognitively impaired. This may happen either because the caller is the injured person, or because the caller is a close relative or friend of the injured person. Using EEG waves, I have analyzed and developed a mathematical model of a person's cognitive impairment. Finally, I have developed a mathematical model of the response time of a 9-1-1 call and analyzed the factors that can be improved to reduce the response time. In this regard, another application, I have developed, allows the 9-1-1 operator to remotely control the media features of a caller's smartphone. This is needed in case the caller is unable to operate the multimedia features of the smartphone. For example, the caller may not know how to zoom in the smartphone camera.All these building blocks come together in the development of an efficient NG9-1-1 Emergency Medical Dispatch protocols. I have provided a sample of these protocols, using the existing Emergency Dispatch Protocols used in the state of New Jersey. The new protocols will have fewer questions and more visual prompts to evaluate the nature of the emergency. digital.library.unt.edu/ark:/67531/metadc500122/
Multi-perspective, Multi-modal Image Registration and Fusion
Multi-modal image fusion is an active research area with many civilian and military applications. Fusion is defined as strategic combination of information collected by various sensors from different locations or different types in order to obtain a better understanding of an observed scene or situation. Fusion of multi-modal images cannot be completed unless these two modalities are spatially aligned. In this research, I consider two important problems. Multi-modal, multi-perspective image registration and decision level fusion of multi-modal images. In particular, LiDAR and visual imagery. Multi-modal image registration is a difficult task due to the different semantic interpretation of features extracted from each modality. This problem is decoupled into three sub-problems. The first step is identification and extraction of common features. The second step is the determination of corresponding points. The third step consists of determining the registration transformation parameters. Traditional registration methods use low level features such as lines and corners. Using these features require an extensive optimization search in order to determine the corresponding points. Many methods use global positioning systems (GPS), and a calibrated camera in order to obtain an initial estimate of the camera parameters. The advantages of our work over the previous works are the following. First, I used high level-features, which significantly reduce the search space for the optimization process. Second, the determination of corresponding points is modeled as an assignment problem between a small numbers of objects. On the other side, fusing LiDAR and visual images is beneficial, due to the different and rich characteristics of both modalities. LiDAR data contain 3D information, while images contain visual information. Developing a fusion technique that uses the characteristics of both modalities is very important. I establish a decision-level fusion technique using manifold models. digital.library.unt.edu/ark:/67531/metadc149562/
A Multi-Time Scale Learning Mechanism for Neuromimic Processing
Learning and representing and reasoning about temporal relations, particularly causal relations, is a deep problem in artificial intelligence (AI). Learning such representations in the real world is complicated by the fact that phenomena are subject to multiple time scale influences and may operate with a strange attractor dynamic. This dissertation proposes a new computational learning mechanism, the adaptrode, which, used in a neuromimic processing architecture may help to solve some of these problems. The adaptrode is shown to emulate the dynamics of real biological synapses and represents a significant departure from the classical weighted input scheme of conventional artificial neural networks. Indeed the adaptrode is shown, by analysis of the deep structure of real synapses, to have a strong structural correspondence with the latter in terms of multi-time scale biophysical processes. Simulations of an adaptrode-based neuron and a small network of neurons are shown to have the same learning capabilities as invertebrate animals in classical conditioning. Classical conditioning is considered a fundamental learning task in animals. Furthermore, it is subject to temporal ordering constraints that fulfill the criteria of causal relations in natural systems. It may offer clues to the learning of causal relations and mechanisms for causal reasoning. The adaptrode is shown to solve an advanced problem in classical conditioning that addresses the problem of real world dynamics. A network is able to learn multiple, contrary associations that separate in time domains, that is a long-term memory can co-exist with a short-term contrary memory without destroying the former. This solves the problem of how to deal with meaningful transients while maintaining long-term memories. Possible applications of adaptrode-based neural networks are explored and suggestions for future research are made. digital.library.unt.edu/ark:/67531/metadc278467/
Multilingual Word Sense Disambiguation Using Wikipedia
Ambiguity is inherent to human language. In particular, word sense ambiguity is prevalent in all natural languages, with a large number of the words in any given language carrying more than one meaning. Word sense disambiguation is the task of automatically assigning the most appropriate meaning to a polysemous word within a given context. Generally the problem of resolving ambiguity in literature has revolved around the famous quote “you shall know the meaning of the word by the company it keeps.” In this thesis, we investigate the role of context for resolving ambiguity through three different approaches. Instead of using a predefined monolingual sense inventory such as WordNet, we use a language-independent framework where the word senses and sense-tagged data are derived automatically from Wikipedia. Using Wikipedia as a source of sense-annotations provides the much needed solution for knowledge acquisition bottleneck. In order to evaluate the viability of Wikipedia based sense-annotations, we cast the task of disambiguating polysemous nouns as a monolingual classification task and experimented on lexical samples from four different languages (viz. English, German, Italian and Spanish). The experiments confirm that the Wikipedia based sense annotations are reliable and can be used to construct accurate monolingual sense classifiers. It is a long belief that exploiting multiple languages helps in building accurate word sense disambiguation systems. Subsequently, we developed two approaches that recast the task of disambiguating polysemous nouns as a multilingual classification task. The first approach for multilingual word sense disambiguation attempts to effectively use a machine translation system to leverage two relevant multilingual aspects of the semantics of text. First, the various senses of a target word may be translated into different words, which constitute unique, yet highly salient signal that effectively expand the target word’s feature space. Second, the translated context words themselves embed co-occurrence information that a translation engine gathers from very large parallel corpora. The second approach for multlingual word sense disambiguation attempts to reduce the reliance on the machine translation system during training by using the multilingual knowledge available in Wikipedia through its interlingual links. Finally, the experiments on a lexical sample from four different languages confirm that the multilingual systems perform better than the monolingual system and significantly improve the disambiguation accuracy. digital.library.unt.edu/ark:/67531/metadc500036/
Multiresolutional/Fractal Compression of Still and Moving Pictures
The scope of the present dissertation is a deep lossy compression of still and moving grayscale pictures while maintaining their fidelity, with a specific goal of creating a working prototype of a software system for use in low bandwidth transmission of still satellite imagery and weather briefings with the best preservation of features considered important by the end user. digital.library.unt.edu/ark:/67531/metadc278779/
A Netcentric Scientific Research Repository
Access: Use of this item is restricted to the UNT Community.
The Internet and networks in general have become essential tools for disseminating in-formation. Search engines have become the predominant means of finding information on the Web and all other data repositories, including local resources. Domain scientists regularly acquire and analyze images generated by equipment such as microscopes and cameras, resulting in complex image files that need to be managed in a convenient manner. This type of integrated environment has been recently termed a netcentric sci-entific research repository. I developed a number of data manipulation tools that allow researchers to manage their information more effectively in a netcentric environment. The specific contributions are: (1) A unique interface for management of data including files and relational databases. A wrapper for relational databases was developed so that the data can be indexed and searched using traditional search engines. This approach allows data in databases to be searched with the same interface as other data. Fur-thermore, this approach makes it easier for scientists to work with their data if they are not familiar with SQL. (2) A Web services based architecture for integrating analysis op-erations into a repository. This technique allows the system to leverage the large num-ber of existing tools by wrapping them with a Web service and registering the service with the repository. Metadata associated with Web services was enhanced to allow this feature to be included. In addition, an improved binary to text encoding scheme was de-veloped to reduce the size overhead for sending large scientific data files via XML mes-sages used in Web services. (3) Integrated image analysis operations with SQL. This technique allows for images to be stored and managed conveniently in a relational da-tabase. SQL supplemented with map algebra operations is used to select and perform operations on sets of images. digital.library.unt.edu/ark:/67531/metadc5611/
Optimizing Non-pharmaceutical Interventions Using Multi-coaffiliation Networks
Computational modeling is of fundamental significance in mapping possible disease spread, and designing strategies for its mitigation. Conventional contact networks implement the simulation of interactions as random occurrences, presenting public health bodies with a difficult trade off between a realistic model granularity and robust design of intervention strategies. Recently, researchers have been investigating the use of agent-based models (ABMs) to embrace the complexity of real world interactions. At the same time, theoretical approaches provide epidemiologists with general optimization models in which demographics are intrinsically simplified. The emerging study of affiliation networks and co-affiliation networks provide an alternative to such trade off. Co-affiliation networks maintain the realism innate to ABMs while reducing the complexity of contact networks into distinctively smaller k-partite graphs, were each partition represent a dimension of the social model. This dissertation studies the optimization of intervention strategies for infectious diseases, mainly distributed in school systems. First, concepts of synthetic populations and affiliation networks are extended to propose a modified algorithm for the synthetic reconstruction of populations. Second, the definition of multi-coaffiliation networks is presented as the main social model in which risk is quantified and evaluated, thereby obtaining vulnerability indications for each school in the system. Finally, maximization of the mitigation coverage and minimization of the overall cost of intervention strategies are proposed and compared, based on centrality measures. digital.library.unt.edu/ark:/67531/metadc271860/
Performance Engineering of Software Web Services and Distributed Software Systems
The promise of service oriented computing, and the availability of Web services promote the delivery and creation of new services based on existing services, in order to meet new demands and new markets. As Web and internet based services move into Clouds, inter-dependency of services and their complexity will increase substantially. There are standards and frameworks for specifying and composing Web Services based on functional properties. However, mechanisms to individually address non-functional properties of services and their compositions have not been well established. Furthermore, the Cloud ontology depicts service layers from a high-level, such as Application and Software, to a low-level, such as Infrastructure and Platform. Each component that resides in one layer can be useful to another layer as a service. It hints at the amount of complexity resulting from not only horizontal but also vertical integrations in building and deploying a composite service. To meet the requirements and facilitate using Web services, we first propose a WSDL extension to permit specification of non-functional or Quality of Service (QoS) properties. On top of the foundation, the QoS-aware framework is established to adapt publicly available tools for Web services, augmented by ontology management tools, along with tools for performance modeling to exemplify how the non-functional properties such as response time, throughput, or utilization of services can be addressed in the service acquisition and composition process. To facilitate Web service composition standards, in this work we extended the framework with additional qualitative information to the service descriptions using Business Process Execution Language (BPEL). Engineers can use BPEL to explore design options, and have the QoS properties analyzed for the composite service. The main issue in our research is performance evaluation in software system and engineering. We researched the Web service computation as the first half of this dissertation, and performance antipattern detection and elimination in the second part. Performance analysis of software system is complex due to large number of components and the interactions among them. Without the knowledge of experienced experts, it is difficult to diagnose performance anomalies and attempt to pinpoint the root causes of the problems. Software performance antipatterns are similar to design patterns in that they provide what to avoid and how to fix performance problems when they appear. Although the idea of applying antipatterns is promising, there are gaps in matching the symptoms and generating feedback solution for redesign. In this work, we analyze performance antipatterns to extract detectable features, influential factors, and resource involvements so that we can lay the foundation to detect their presence. We propose system abstract layering model and suggestive profiling methods for performance antipattern detection and elimination. Solutions proposed can be used during the refactoring phase, and can be included in the software development life cycle. Proposed tools and utilities are implemented and their use is demonstrated with RUBiS benchmark. digital.library.unt.edu/ark:/67531/metadc500103/
Practical Cursive Script Recognition
This research focused on the off-line cursive script recognition application. The problem is very large and difficult and there is much room for improvement in every aspect of the problem. Many different aspects of this problem were explored in pursuit of solutions to create a more practical and usable off-line cursive script recognizer than is currently available. digital.library.unt.edu/ark:/67531/metadc277710/
Practical Parallel Processing
The physical limitations of uniprocessors and the real-time requirements of numerous practical applications have made parallel processing an essential technology in military, industry and scientific research. In this dissertation, we investigate parallelizations of three practical applications using three parallel machine models. The algorithms are: Finitely inductive (FI) sequence processing is a pattern recognition technique used in many fields. We first propose four parallel FI algorithms on the EREW PRAM. The time complexity of the parallel factoring and following by bucket packing is O(sk^2 n/p), and they are optimal under some conditions. The parallel factoring and following by hashing requires O(sk^2 n/p) time when uniform hash functions are used and log(p) ≤ k n/p and pm ≈ n. Their speedup is proportional to the number processors used. For these results, s is the number of levels, k is the size of the antecedents and n is the length of the input sequence and p is the number of processors. We also describe algorithms for raster/vector conversion based on the scan model to handle block-like connected components of arbitrary geometrical shapes with multi-level nested dough nuts for the IES (image exploitation system). Both the parallel raster-to-vector algorithm and parallel vector-to-raster algorithm require O(log(n2)) or O(log2(n2)) time (depending on the sorting algorithms used) for images of size n2 using p = n2 processors. Not only is the DWT (discrete wavelet transforms) useful in data compression, but also has it potentials in signal processing, image processing, and graphics. Therefore, it is of great importance to investigate efficient parallelizations of the wavelet transforms. The time complexity of the parallel forward DWT on the parallel virtual machine with linear processor organization is O(((so+s1)mn)/p), where s0 and s1 are the lengths of the filters and p is the number of processors used. The time complexity of the inverse DWT is also O(((so+s1)mn)/p). If the processors are organized as a 2D array with PrawPcol processors, both the interleaved parallel DWT and IDWT have the time complexity of O(((so+s1)mn)/ProwPcol). We have parallelized three applications and achieved optimality or best-possible performances for each of the three applications over each of the chosen machine models. Future research will involve continued examination of parallel architectures for implementation of practical problems. digital.library.unt.edu/ark:/67531/metadc278769/
Privacy Management for Online Social Networks
One in seven people in the world use online social networking for a variety of purposes -- to keep in touch with friends and family, to share special occasions, to broadcast announcements, and more. The majority of society has been bought into this new era of communication technology, which allows everyone on the internet to share information with friends. Since social networking has rapidly become a main form of communication, holes in privacy have become apparent. It has come to the point that the whole concept of sharing information requires restructuring. No longer are online social networks simply technology available for a niche market; they are in use by all of society. Thus it is important to not forget that a sense of privacy is inherent as an evolutionary by-product of social intelligence. In any context of society, privacy needs to be a part of the system in order to help users protect themselves from others. This dissertation attempts to address the lack of privacy management in online social networks by designing models which understand the social science behind how we form social groups and share information with each other. Social relationship strength was modeled using activity patterns, vocabulary usage, and behavioral patterns. In addition, automatic configuration for default privacy settings was proposed to help prevent new users from leaking personal information. This dissertation aims to mobilize a new era of social networking that understands social aspects of human network, and uses that knowledge to honor users' privacy. digital.library.unt.edu/ark:/67531/metadc283816/
Procedural content creation and technologies for 3D graphics applications and games.
Access: Use of this item is restricted to the UNT Community.
The recent transformation of consumer graphics (CG) cards into powerful 3D rendering processors is due in large measure to the success of game developers in delivering mass market entertainment software that feature highly immersive and captivating virtual environments. Despite this success, 3D CG application development is becoming increasingly handicapped by the inability of traditional content creation methods to keep up with the demand for content. The term content is used here to refer to any data operated on by application code that is meant for viewing, including 3D models, textures, animation sequences and maps or other data-intensive descriptions of virtual environments. Traditionally, content has been handcrafted by humans. A serious problem facing the interactive graphics software development community is how to increase the rate at which content can be produced to keep up with the increasingly rapid pace at which software for interactive applications can now be developed. Research addressing this problem centers around procedural content creation systems. By moving away from purely human content creation toward systems in which humans play a substantially less time-intensive but no less creative part in the process, procedural content creation opens new doors. From a qualitative standpoint, these types of systems will not rely less on human intervention but rather more since they will depend heavily on direction from a human in order to synthesize the desired content. This research draws heavily from the entertainment software domain but the research is broadly relevant to 3D graphics applications in general. digital.library.unt.edu/ark:/67531/metadc4726/
Quantifying Design Principles in Reusable Software Components
Software reuse can occur in various places during the software development cycle. Reuse of existing source code is the most commonly practiced form of software reuse. One of the key requirements for software reuse is readability, thus the interest in the use of data abstraction, inheritance, modularity, and aspects of the visible portion of module specifications. This research analyzed the contents of software reuse libraries to answer the basic question of what makes a good reusable software component. The approach taken was to measure and analyze various software metrics as mapped to design characteristics. A related research question investigated the change in the design principles over time. This was measured by comparing sets of Ada reuse libraries categorized into two time periods. It was discovered that recently developed Ada reuse components scored better on readability than earlier developed components. A benefit of this research has been the development of a set of "design for reuse" guidelines. These guidelines address coding practices as well as design principles for an Ada implementation. C++ software reuse libraries were also analyzed to determine if design principles can be applied in a language independent fashion. This research used cyclomatic complexity metrics, software science metrics, and traditional static code metrics to measure design features. This research provides at least three original contributions. First it collects empirical data about existing reuse libraries. Second, it develops a readability measure for software libraries which can aid in comparing libraries. And third, this research developed a set of coding and design guidelines for developers of reusable software. Future research can investigate how design principles for C++ change over time. Another topic for research is the investigation of systems employing reused components to determine which libraries are more successfully used than others. digital.library.unt.edu/ark:/67531/metadc278795/
Real-time Rendering of Burning Objects in Video Games
In recent years there has been growing interest in limitless realism in computer graphics applications. Among those, my foremost concentration falls into the complex physical simulations and modeling with diverse applications for the gaming industry. Different simulations have been virtually successful by replicating the details of physical process. As a result, some were strong enough to lure the user into believable virtual worlds that could destroy any sense of attendance. In this research, I focus on fire simulations and its deformation process towards various virtual objects. In most game engines model loading takes place at the beginning of the game or when the game is transitioning between levels. Game models are stored in large data structures. Since changing or adjusting a large data structure while the game is proceeding may adversely affect the performance of the game. Therefore, developers may choose to avoid procedural simulations to save resources and avoid interruptions on performance. I introduce a process to implement a real-time model deformation while maintaining performance. It is a challenging task to achieve high quality simulation while utilizing minimum resources to represent multiple events in timely manner. Especially in video games, this overwhelming criterion would be robust enough to sustain the engaging player's willing suspension of disbelief. I have implemented and tested my method on a relatively modest GPU using CUDA. My experiments conclude this method gives a believable visual effect while using small fraction of CPU and GPU resources. digital.library.unt.edu/ark:/67531/metadc500131/
Recognition of Face Images
The focus of this dissertation is a methodology that enables computer systems to classify different up-front images of human faces as belonging to one of the individuals to which the system has been exposed previously. The images can present variance in size, location of the face, orientation, facial expressions, and overall illumination. The approach to the problem taken in this dissertation can be classified as analytic as the shapes of individual features of human faces are examined separately, as opposed to holistic approaches to face recognition. The outline of the features is used to construct signature functions. These functions are then magnitude-, period-, and phase-normalized to form a translation-, size-, and rotation-invariant representation of the features. Vectors of a limited number of the Fourier decomposition coefficients of these functions are taken to form the feature vectors representing the features in the corresponding vector space. With this approach no computation is necessary to enforce the translational, size, and rotational invariance at the stage of recognition thus reducing the problem of recognition to the k-dimensional clustering problem. A recognizer is specified that can reliably classify the vectors of the feature space into object classes. The recognizer made use of the following principle: a trial vector is classified into a class with the greatest number of closest vectors (in the sense of the Euclidean distance) among all vectors representing the same feature in the database of known individuals. A system based on this methodology is implemented and tried on a set of 50 pictures of 10 individuals (5 pictures per individual). The recognition rate is comparable to that of most recent results in the area of face recognition. The methodology presented in this dissertation is also applicable to any problem of pattern recognition where patterns can be represented as a collection of black shapes on the white background. digital.library.unt.edu/ark:/67531/metadc277785/
Simulating the Spread of Infectious Diseases in Heterogeneous Populations with Diverse Interactions Characteristics
The spread of infectious diseases has been a public concern throughout human history. Historic recorded data has reported the severity of infectious disease epidemics in different ages. Ancient Greek physician Hippocrates was the first to analyze the correlation between diseases and their environment. Nowadays, health authorities are in charge of planning strategies that guarantee the welfare of citizens. The simulation of contagion scenarios contributes to the understanding of the epidemic behavior of diseases. Computational models facilitate the study of epidemics by integrating disease and population data to the simulation. The use of detailed demographic and geographic characteristics allows researchers to construct complex models that better resemble reality and the integration of these attributes permits us to understand the rules of interaction. The interaction of individuals with similar characteristics forms synthetic structures that depict clusters of interaction. The synthetic environments facilitate the study of the spread of infectious diseases in diverse scenarios. The characteristics of the population and the disease concurrently affect the local and global epidemic progression. Every cluster’ epidemic behavior constitutes the global epidemic for a clustered population. By understanding the correlation between structured populations and the spread of a disease, current dissertation research makes possible to identify risk groups of specific characteristics and devise containment strategies that facilitate health authorities to improve mitigation strategies. digital.library.unt.edu/ark:/67531/metadc407831/
Socioscope: Human Relationship and Behavior Analysis in Mobile Social Networks
Access: Use of this item is restricted to the UNT Community.
The widely used mobile phone, as well as its related technologies had opened opportunities for a complete change on how people interact and build relationship across geographic and time considerations. The convenience of instant communication by mobile phones that broke the barrier of space and time is evidently the key motivational point on why such technologies so important in people's life and daily activities. Mobile phones have become the most popular communication tools. Mobile phone technology is apparently changing our relationship to each other in our work and lives. The impact of new technologies on people's lives in social spaces gives us the chance to rethink the possibilities of technologies in social interaction. Accordingly, mobile phones are basically changing social relations in ways that are intricate to measure with any precision. In this dissertation I propose a socioscope model for social network, relationship and human behavior analysis based on mobile phone call detail records. Because of the diversities and complexities of human social behavior, one technique cannot detect different features of human social behaviors. Therefore I use multiple probability and statistical methods for quantifying social groups, relationships and communication patterns, for predicting social tie strengths and for detecting human behavior changes and unusual consumption events. I propose a new reciprocity index to measure the level of reciprocity between users and their communication partners. The experimental results show that this approach is effective. Among other applications, this work is useful for homeland security, detection of unwanted calls (e.g., spam), telecommunication presence, and marketing. In my future work I plan to analyze and study the social network dynamics and evolution. digital.library.unt.edu/ark:/67531/metadc30533/
FIRST PREV 1 2 NEXT LAST