Search Results

Additive Manufacturing of Metastable Beta Titanium Alloys
Additive manufacturing processes of many alloys are known to develop texture during the deposition process due to the rapid reheating and the directionality of the dissipation of heat. Titanium alloys and with respect to this study beta titanium alloys are especially susceptible to these effects. This work examines Ti-20wt%V and Ti-12wt%Mo deposited under normal additive manufacturing process parameters to examine the texture of these beta-stabilized alloys. Both microstructures contained columnar prior beta grains 1-2 mm in length beginning at the substrate with no visible equiaxed grains. This microstructure remained constant in the vanadium system throughout the build. The microstructure of the alloy containing molybdenum changed from a columnar to an equiaxed structure as the build height increased. Eighteen additional samples of the Ti-Mo system were created under different processing parameters to identify what role laser power and travel speed have on the microstructure. There appears to be a correlation in alpha lath size and power density. The two binary alloys were again deposited under the same conditions with the addition of 0.5wt% boron to investigate the effects an insoluble interstitial alloying element would have on the microstructure. The size of the prior beta grains in these two alloys were reduced with the addition of boron by approximately 50 (V) and 100 (Mo) times.
Alloy Development and High-Energy X-Ray Diffraction Studies of NiTiZr and NiTiHf High Temperature Shape Memory Alloys
NiTi-based shape memory alloys (SMAs) offer a good combination of high-strength, ductility, corrosion resistance, and biocompatibility that has served them well and attracted the attention of many researchers and industries. The alloys unique thermo-mechanical ability to recover their initial shape after relatively large deformations by heating or upon unloading due to a characteristic reversible phase transformation makes them useful as damping devices, solid state actuators, couplings, etc. However, there is a need to increase the temperature of the characteristic phase transformation above 150 °C, especially in the aerospace industry where high temperatures are often seen. Prior researchers have shown that adding ternary elements (Pt, Pd, Au, Hf and Zr) to NiTi can increase transformation temperatures but most of these additions are extremely expensive, creating a need to produce cost-effective high temperature shape memory alloys (HTSMAs). Thus, the main objective of this research is to examine the relatively unstudied NiTiZr system for the ability to produce a cost effective and formable HTSMA. Transformation temperatures, precipitation paths, processability, and high-temperature oxidation are examined, specifically using high energy X-ray Diffraction (XRD) measurements, in NiTi-20 at.% Zr. This is followed by an in situ XRD study of the phase growth kinetics of the favorable H-phase nano precipitates, formed in NiTiHf and NiTiZr HTSMAs, based on prior thermo-mechanical processing in a commercial NiTi-15 at.% Hf HTSMA to examine the final processing methods and aging characteristics. Through this research, knowledge of the precipitation paths in NiTiZr and NiTiHf HTSMAs is extended and methods for characterization of phases and strains using high energy XRD are elucidated for future work in the field.
Anisotropic Nature of Radially Strained Metal Tubes
Metal pipes are sometimes swaged by a metal cone to enlarge them, which increases the strain in the material. The amount of strain is important because it affects the burst and collapse strength. Burst strength is the amount of internal pressure that a pipe can withstand before failure, while collapse strength is the amount of external pressure that a pipe can withstand before failure. If the burst or collapse strengths are exceeded, the pipe may fracture, causing critical failure. Such an event could cost the owners and their customers millions of dollars in clean up, repair, and lost time, in addition to the potential environmental damage. Therefore, a reliable way of estimating the burst and collapse strength of strained pipe is desired and valuable. The sponsor currently rates strained pipes using the properties of raw steel, because those properties are easily measured (for example, yield strength). In the past, the engineers assumed that the metal would be work-hardened when swaged, so that yield strength would increase. However, swaging introduces anisotropic strain, which may decrease the yield strength. This study measured the yield strength of strained material in the transverse and axial direction and compared them to raw material, to determine the amount of anisotropy. This information will be used to more accurately determine burst and collapse ratings for strained pipes. More accurate ratings mean safer products, which will minimize risk for the sponsor’s customers. Since the strained metal has a higher yield strength than the raw material, using the raw yield strength to calculate burst and collapse ratings is a conservative method. The metal has even higher yield strength after strain aging, which indicates that the stresses are relieved. Even with the 12% anisotropy in the strained and 9% anisotropy in the strain aged specimens, the raw yield strengths are …
Atomistic Computer Simulations of Diffusion Mechanisms in Lithium Lanthanum Titanate Solid State Electrolytes for Lithium Ion Batteries
Solid state lithium ion electrolytes are important to the development of next generation safer and high power density lithium ion batteries. Perovskite-structured LLT is a promising solid electrolyte with high lithium ion conductivity. LLT also serves as a good model system to understand lithium ion diffusion behaviors in solids. In this thesis, molecular dynamics and related atomistic computer simulations were used to study the diffusion behavior and diffusion mechanism in bulk crystal and grain boundary in lithium lanthanum titanate (LLT) solid state electrolytes. The effects of defect concentration on the structure and lithium ion diffusion behaviors in LLT were systematically studied and the lithium ion self-diffusion and diffusion energy barrier were investigated by both dynamic simulations and static calculations using the nudged elastic band (NEB) method. The simulation results show that there exist an optimal vacancy concentration at around x=0.067 at which lithium ions have the highest diffusion coefficient and the lowest diffusion energy barrier. The lowest energy barrier from dynamics simulations was found to be around 0.22 eV, which compared favorably with 0.19 eV from static NEB calculations. It was also found that lithium ions diffuse through bottleneck structures made of oxygen ions, which expand in dimension by 8-10% when lithium ions pass through. By designing perovskite structures with large bottleneck sizes can lead to materials with higher lithium ion conductivities. The structure and diffusion behavior of lithium silicate glasses and their interfaces, due to their importance as a grain boundary phase, with LLT crystals were also investigated by using molecular dynamics simulations. The short and medium range structures of the lithium silicate glasses were characterized and the ceramic/glass interface models were obtained using MD simulations. Lithium ion diffusion behaviors in the glass and across the glass/ceramic interfaces were investigated. It was found that there existed a minor segregation …
Atomistic Simulations of Deformation Mechanisms in Ultra-Light Weight Mg-Li Alloys
Mg alloys have spurred a renewed academic and industrial interest because of their ultra-light-weight and high specific strength properties. Hexagonal close packed Mg has low deformability and a high plastic anisotropy between basal and non-basal slip systems at room temperature. Alloying with Li and other elements is believed to counter this deficiency by activating non-basal slip by reducing their nucleation stress. In this work I study how Li addition affects deformation mechanisms in Mg using atomistic simulations. In the first part, I create a reliable and transferable concentration dependent embedded atom method (CD-EAM) potential for my molecular dynamics study of deformation. This potential describes the Mg-Li phase diagram, which accurately describes the phase stability as a function of Li concentration and temperature. Also, it reproduces the heat of mixing, lattice parameters, and bulk moduli of the alloy as a function of Li concentration. Most importantly, our CD-EAM potential reproduces the variation of stacking fault energy for basal, prismatic, and pyramidal slip systems that influences the deformation mechanisms as a function of Li concentration. This success of CD-EAM Mg-Li potential in reproducing different properties, as compared to literature data, shows its reliability and transferability. Next, I use this newly created potential to study the effect of Li addition on deformation mechanisms in Mg-Li nanocrystalline (NC) alloys. Mg-Li NC alloys show basal slip, pyramidal type-I slip, tension twinning, and two-compression twinning deformation modes. Li addition reduces the plastic anisotropy between basal and non-basal slip systems by modifying the energetics of Mg-Li alloys. This causes the solid solution softening. The inverse relationship between strength and ductility therefore suggests a concomitant increase in alloy ductility. A comparison of the NC results with single crystal deformation results helps to understand the qualitative and quantitative effect of Li addition in Mg on nucleation stress and fault …
Atomistic Studies of Point Defect Migration Rates in the Iron-Chromium System
Generation and migration of helium and other point defects under irradiation causes ferritic steels based on the Fe-Cr system to age and fail. This is motivation to study point defect migration and the He equation of state using atomistic simulations due to the steels' use in future reactors. A new potential for the Fe-Cr-He system developed by collaborators at the Lawrence Livermore National Laboratory was validated using published experimental data. The results for the He equation of state agree well with experimental data. The activation energies for the migration of He- and Fe-interstitials in varying compositions of Fe-Cr lattices agree well with prior work. This research did not find a strong correlation between lattice ordering and interstitial migration energy
Biocompatible Hybrid Nanomaterials Involving Polymers and Hydrogels Interfaced with Phosphorescent Complexes and Toxin-Free Metallic Nanoparticles for Biomedical Applications
The major topics discussed are all relevant to interfacing brightly phosphorescent and non-luminescent coinage metal complexes of [Ag(I) and Au(I)] with biopolymers and thermoresponsive gels for making hybrid nanomaterials with an explanation on syntheses, characterization and their significance in biomedical fields. Experimental results and ongoing work on determining outreaching consequences of these hybrid nanomaterials for various biomedical applications like cancer therapy, bio-imaging and antibacterial abilities are described. In vitro and in vivo studies have been performed on majority of the discussed hybrid nanomaterials and determined that the cytotoxicity or antibacterial activity are comparatively superior when compared to analogues in literature. Consequential differences are noticed in photoluminescence enhancement from hybrid phosphorescent hydrogels, phosphorescent complex ability to physically crosslink, Au(I) sulfides tendency to form NIR (near-infrared) absorbing AuNPs compared to any similar work in literature. Syntheses of these hybrid nanomaterials has been thoroughly investigated and it is determined that either metallic nanoparticles syntheses or syntheses of phosphorescent hydrogels can be carried in single step without involving any hazardous reducing agents or crosslinkers or stabilizers that are commonly employed during multiple step syntheses protocols for syntheses of similar materials in literature. These astounding results that have been discovered within studies of hybrid nanomaterials are an asset to applications ranging from materials development to health science and will have striking effect on environmental and green chemistry approaches.
Biodegradable Poly(hydroxy Butyrate-co-valerate) Nanocomposites And Blends With Poly(butylene Adipate-co-terephthalate) For Sensor Applications
The utilization of biodegradable polymers is critical for developing “cradle to cradle” mindset with ecological, social and economic consequences. Poly(hydroxy butyrate-co-valerate) (PHBV) shows significant potential for many applications with a polypropylene equivalent mechanical performance. However, it has limitations including high crystallinity, brittleness, small processing window, etc. which need to be overcome before converting them into useful products. Further the development of biodegradable strain sensing polymer sensors for structural health monitoring has been a growing need. In this dissertation I utilize carbon nanotubes as a self sensing dispersed nanofiller. The impact of its addition on PHBV and a blend of PHBV with poly(butylene adipate-co-terephthalate) (PBAT) polymer was examined. Nanocomposites and blends of PHBV, PBAT, and MWCNTs were prepared by melt-blending. The effect of MWCNTs on PHBV crystallinity, crystalline phase, quasi-static and dynamic mechanical property was studied concurrently with piezoresistive response. In PHBV/PBAT blends a rare phenomenon of melting point elevation by the addition of low melting point PBAT was observed. The blends of these two semicrystalline aliphatic and aromatic polyesters were investigated by using differential scanning calorimetry, small angle X-ray scattering, dynamic mechanical analysis, surface energy measurement by contact angle method, polarized optical and scanning electron microscopy, and rheology. The study revealed a transition of immiscible blend compositions to miscible blend compositions across the 0-100 composition range. PHBV10, 20, and 30 were determined to be miscible blends based on a single Tg and rheological properties. The inter-relation between stress, strain, morphological structure and piezoresistive response of MWCNT filled PHBV and PHBV/PBAT blend system was thoroughly investigated. The outcomes of piezoreistivity study indicated MWCNT filled PHBV and PHBV/PBAT blend system as a viable technology for structural health monitoring. Finally, the compostability of pure polymer, blend system, and MWCNT filled system was studied indicating that PBAT and CNT decreased the biodegradability of PHBV …
Bioresorbable Polymer Blend Scaffold for Tissue Engineering
Tissue engineering merges the disciplines of study like cell biology, materials science, engineering and surgery to enable growth of new living tissues on scaffolding constructed from implanted polymeric materials. One of the most important aspects of tissue engineering related to material science is design of the polymer scaffolds. The polymer scaffolds needs to have some specific mechanical strength over certain period of time. In this work bioresorbable aliphatic polymers (PCL and PLLA) were blended using extrusion and solution methods. These blends were then extruded and electrospun into fibers. The fibers were then subjected to FDA standard in vitro immersion degradation tests where its mechanical strength, water absorption, weight loss were observed during the eight weeks. The results indicate that the mechanical strength and rate of degradation can be tailored by changing the ratio of PCL and PLLA in the blend. Processing influences these parameters, with the loss of mechanical strength and rate of degradation being higher in electrospun fibers compared to those extruded. A second effort in this thesis addressed the potential separation of the scaffold from the tissue (loss of apposition) due to the differences in their low strain responses. This hypothesis that using knit with low tension will have better compliance was tested and confirmed.
Carrier Mobility, Charge Trapping Effects on the Efficiency of Heavily Doped Organic Light-Emitting Diodes, and EU(lll) Based Red OLEDs
Transient electroluminescence (EL) was used to measure the onset of emission delay in OLEDs based on transition metal, phosphorescent bis[3,5-bis(2-pyridyl)-1,2,4-triazolato] platinum(ΙΙ) and rare earth, phosphorescent Eu(hfa)3 with 4'-(p-tolyl)-2,2":6',2" terpyridine (ttrpy) doped into 4,4'-bis(carbazol-9-yl) triphenylamine (CBP), from which the carrier mobility was determined. For the Pt(ptp)2 doped CBP films in OLEDs with the structure: ITO/NPB (40nm)/mcp (10nm)/65% Pt(ptp)2:CBP (25nm)/TPBI (30nm)/Mg:Ag (100nm), where NPB=N, N'-bis(1-naphthyl)-N-N'-biphenyl-1, 1'-biphenyl-4, MCP= N, N'-dicarbazolyl-3,5-benzene, TPBI=1,3,5-tris(phenyl-2-benzimidazolyl)-benzene, delayed recombination was observed and based on its dependence on frequency and duty cycle, ascribed to trapping and de-trapping processes at the interface of the emissive layer and electron blocker. The result suggests that the exciton recombination zone is at, or close to the interface between the emissive layer and electron blocker. The lifetime of the thin films of phosphorescent emitter Pt(ptp)2 were studied for comparison with rare earth emitter Eu(hfa)3. The lifetime of 65% Pt(ptp)2:CBP co-film was around 638 nanoseconds at the emission peak of 572nm, and the lifetime of neat Eu(hfa)3 film was obtained around 1 millisecond at 616 nm, which supports the enhanced efficiency obtained from the Pt(ptp)2 devices. The long lifetime and narrow emission of the rare earth dopant Eu(hfa)3 is a fundamental factor limiting device performance. Red organic light emitting diodes (OLEDs) based on the rare earth emitter Eu(hfa)3 with 4'-(p-tolyl)-2,2":6',2" terpyridine (ttrpy) complex have been studied and improved with respect performance. The 4.5% Eu(hfa)3 doped into CBP device produced the best power efficiency of 0.53 lm/W, and current efficiency of 1.09 cd/A. The data suggests that the long lifetime of the f-f transition of the Eu ion is a principal limiting factor irrespective of how efficient the energy transfer from the host to the dopant and the antenna effect are.
Catalytic Properties and Mechanical Behavior of Metallic Glass Powders
Lack of crystalline order and microstructural features such as grain/grain-boundary in metallic glasses results in a suite of remarkable attributes including very high strength, close to theoretical elasticity, high corrosion and wear resistance, and soft magnetic properties. By altering the morphology and tuning of composition, MGs may be transformed into high-performance catalytic materials. In this study, the catalytic properties of metallic glass powders were demonstrated in dissociating toxic organic chemicals such as AZO dye. BMG powders showed superior performance compared to state of the art crystalline iron because of their high catalytic activity, durability, and reusability. To enhance the catalytic properties, high energy mechanical milling was performed to increase the surface area and defect density. Iron-based bulk metallic glass (BMG) of composition Fe48Cr15Mo14Y2C15B6 was used because of its low cost and ability to make large surface area by high energy ball milling. AZO dye was degraded in less than 20 minutes for the 9 hours milled Fe-BMG. However, subsequent increase in ball milling time resulted in devitrification and loss of catalytic activity as measured using UV-Visible spectroscopy. Aluminum-based bulk metallic glass (Al-BMG) powder of composition Al82Fe3Ni8Y7 was synthesized by arc-melting the constituent elements followed by gas-atomization. The particle size and morphology were similar to Fe-BMG with a fully amorphous structure. A small percentage of transition metal constituents (Fe and Ni) in a mostly aluminum alloy showed high catalytic activity, with no toxic by-products and no change in surface characteristics. Al-alloy particles, being light-weight, were easily dispersed in aqueous medium and accelerated the redox reactions. The mechanism of dye dissociation was studied using Raman and Infrared (IR) spectroscopy. Breaking of -C-H- and - C-N- bonds of AZO dye was found to be the primary mechanism. Mechanical behavior of individual BMG particles was evaluated by in situ pico-indentation in a scanning electron …
Characterization of Ti-6Al-4V Produced Via Electron Beam Additive Manufacturing
In recent years, additive manufacturing (AM) has become an increasingly promising method used for the production of structural metallic components. There are a number of reasons why AM methods are attractive, including the ability to produce complex geometries into a near-net shape and the rapid transition from design to production. Ti-6Al-4V is a titanium alloy frequently used in the aerospace industry which is receiving considerable attention as a good candidate for processing via electron beam additive manufacturing (EBAM). The Sciaky EBAM method combines a high-powered electron beam, weld-wire feedstock, and a large build chamber, enabling the production of large structural components. In order to gain wide acceptance of EBAM of Ti-6Al-4V as a viable manufacturing method, it is important to understand broadly the microstructural features that are present in large-scale depositions, including specifically: the morphology, distribution and texture of the phases present. To achieve such an understanding, stereological methods were used to populate a database quantifying key microstructural features in Ti-6Al-4V including volume fraction of phases, a lath width, colony scale factor, and volume fraction of basket weave type microstructure. Microstructural features unique to AM, such as elongated grains and banded structures, were also characterized. Hardness and tensile testing were conducted and the results were related to the microstructural morphology and sample orientation. Lastly, fractured surfaces and defects were investigated. The results of these activities provide insight into the process-structure-properties relationships found in EBAM processed Ti-6Al-4V.
Combinatorial Assessment of the Influence of Composition and Exposure Time on the Oxidation Behavior and Concurrent Oxygen-induced Phase Transformations of Binary Ti-x Systems
The relatively low oxidation resistance and subsequent surface embrittlement have often limited the use of titanium alloys in elevated temperature structural applications. Although extensive effort is spent to investigate the high temperature oxidation performance of titanium alloys, the studies are often constrained to complex technical titanium alloys and neither the mechanisms associated with evolution of the oxide scale nor the effect of oxygen ingress on the microstructure of the base metal are well-understood. In addition lack of systematic oxidation studies across a wider domain of the alloy composition has complicated the determination of composition-mechanism-property relationships. Clearly, it would be ideal to assess the influence of composition and exposure time on the oxidation resistance, independent of experimental variabilities regarding time, temperature and atmosphere as the potential source of error. Such studies might also provide a series of metrics (e.g., hardness, scale, etc) that could be interpreted together and related to the alloy composition. In this thesis a novel combinatorial approach was adopted whereby a series of compositionally graded specimens, (Ti-xMo, Ti-xCr, Ti-xAl and Ti-xW) were prepared using Laser Engineered Net Shaping (LENS™) technology and exposed to still-air at 650 °C. A suite of the state-of-the-art characterization techniques were employed to assess several aspects of the oxidation reaction as a function of local average composition including: the operating oxidation mechanisms; the structure and composition of the oxides; the oxide adherence and porosity; the thickness of the oxide layers; the depth of oxygen ingress; and microstructural evolution of the base material just below the surface but within the oxygen-enriched region. The results showed that for the Ti-Mo, Ti-Al and Ti-W systems a parabolic oxidation rate law is obeyed in the studied composition-time domain while Ti-Cr system experiences a rapid breakaway oxidation regime at low solute concentrations. The only titanium oxide phase present in …
Comparative Coarsening Kinetics of Gamma Prime Precipitates in Nickel and Cobalt Base Superalloys
The increasing technological need to push service conditions of structural materials to higher temperatures has motivated the development of several alloy systems. Among them, superalloys are an excellent candidate for high temperature applications because of their ability to form coherent ordered precipitates, which enable the retention of high strength close to their melting temperature. The accelerated kinetics of solute diffusion, with or without an added component of mechanical stress, leads to coarsening of the precipitates, and results in microstructural degradation, limiting the durability of the materials. Hence, the coarsening of precipitates has been a classical research problem for these alloys in service. The prolonged hunt for an alternative of nickel base superalloys with superior traits has gained hope after the recent discovery of Co-Al-W based alloys, which readily form high temperature g precipitates, similar to Ni base superalloys. In the present study, coarsening behavior of g precipitates in Co-10Al-10W (at. %) has been carried out at 800°C and 900°C. This study has, for the first time, obtained critical coarsening parameters in cobalt-base alloys. Apart from this, it has incorporated atomic scale compositional information across the g/g interfaces into classical Cahn-Hilliard model for a better model of coarsening kinetics. The coarsening study of g precipitates in Ni-14Al-7 Cr (at. %) has shown the importance of temporal evolution of the compositional width of the g/g interfaces to the coarsening kinetics of g precipitates. This study has introduced a novel, reproducible characterization method of crystallographic study of ordered phase by coupling of orientation microscopy with atom probe tomography (APT). Along with the detailed analysis of field evaporation behaviors of Ni and Co superalloys in APT, the present study determines the site occupancy of various solutes within ordered g precipitates in both Ni and Co superalloys. This study has explained the role of structural …
Compostable Soy-Based Polyurethane Foam with Kenaf Core Modifiers
Building waste and disposable packaging are a major component in today's landfills. Most of these are structural or thermally insulative polymer foams that do not degrade over a long period of time. Currently, there is a push to replace these foams with thermoplastic or biodegradable foams that can either be recycled or composted. We propose the use of compostable soy-based polyurethane foams (PU) with kenaf core modifiers that will offer the desired properties with the ability to choose responsible end-of-life decisions. The effect of fillers is a critical parameter in investigating the thermal and mechanical properties along with its effect on biodegradability. In this work, foams with 5%, 10%, and 15% kenaf core content were created. Two manufacturing approaches were used: the free foaming used by spray techniques and the constrained expansion complementary to a mold cavity. Structure-property relations were examined using differential scanning calorimetry (DSC), dynamic mechanical analysis (DMA), thermal conductivity, compression values, scanning electron microscopy (SEM), x-ray micro-computed tomography (micro-CT), and automated multiunit composting system (AMCS). The results show that mechanical properties are reduced with the introduction of kenaf core reinforcement while thermal conductivity and biodegradability display a noticeable improvement. This shows that in application properties can be improved while establishing a responsible end-of-life choice.
Computational Studies on Structures and Ionic Diffusion of Bioactive Glasses
Bioactive glasses are a class of synthetic inorganic material that have wide orthopedics, dentistry, tissue engineering and other biomedical applications. The origin of the bioactivity is closely related to the atomic structures of these novel glass materials, which otherwise lack long range order and defies any direct experimental measurements due to their amorphous nature. The structure of bioactive glasses is thus essential for the understanding of bioactive behaviors and eventually rational design of glass compositions. In this dissertation, molecular dynamics (MD) and reverse monte carlo (RMC) based computer simulations have been used to systematically study the atomic structure of three classes of new bioactive glasses: strontium doped 45S5 Bioglass®, ZnO-SrO containing bioactive glasses, and Cao-MgO-P2O5-SiO2 bioactive glasses. Properties such as ionic diffusion that are important to glass dissolution behaviors are also examined as a function of glass compositions. The accuracy of structure model generated by simulation was validated by comparing with various experimental measurements including X-ray/neutron diffraction, NMR and Raman spectroscopy. It is shown in this dissertation that atomistic computer simulations, when integrated with structural and property characterizations, is an effective tool in understanding the structural origin of bioactivity and other properties of amorphous bioactive materials that can lead to design of novel materials for biomedical applications.
Computational Study of Dislocation Based Mechanisms in FCC Materials
Understanding the relationships between microstructures and properties of materials is a key to developing new materials with more suitable qualities or employing the appropriate materials in special uses. In the present world of material research, the main focus is on microstructural control to cost-effectively enhance properties and meet performance specifications. This present work is directed towards improving the fundamental understanding of the microscale deformation mechanisms and mechanical behavior of metallic alloys, particularly focusing on face centered cubic (FCC) structured metals through a unique computational methodology called three-dimensional dislocation dynamics (3D-DD). In these simulations, the equations of motion for dislocations are mathematically solved to determine the evolution and interaction of dislocations. Microstructure details and stress-strain curves are a direct observation in the simulation and can be used to validate experimental results. The effect of initial dislocation microstructure on the yield strength has been studied. It has been shown that dislocation density based crystal plasticity formulations only work when dislocation densities/numbers are sufficiently large so that a statistically accurate description of the microstructure can be obtainable. The evolution of the flow stress for grain sizes ranging from 0.5 to 10 µm under uniaxial tension was simulated using an improvised model by integrating dislocation pile-up mechanism at grain boundaries has been performed. This study showed that for a same initial dislocation density, the Hall–Petch relationship holds well at small grain sizes (0.5–2 µm), beyond which the yield strength remains constant as the grain size increases.
Corrosion Protection of Aerospace Grade Magnesium Alloy Elektron 43™ for Use in Aircraft Cabin Interiors
Magnesium alloys exhibit desirable properties for use in transportation technology. In particular, the low density and high specific strength of these alloys is of interest to the aerospace community. However, the concerns of flammability and susceptibility to corrosion have limited the use of magnesium alloys within the aircraft cabin. This work studies a magnesium alloy containing rare earth elements designed to increase resistance to ignition while lowering rate of corrosion. The microstructure of the alloy was documented using scanning electron microscopy. Specimens underwent salt spray testing and the corrosion products were examined using energy dispersive spectroscopy.
Defining a Relationship between the Flexibility of Materials and Other Properties
Brittleness of a polymeric material has a direct relationship with the material's performance and furthermore shares an inverse relationship with that material's flexibility. The concept of flexibility of materials has been understood but merely explained with a hand-waving manner. Thus, it has never been defined by a calculation, thereby lacking the ability to determine a definite quantitative value for this characteristic. Herein, an equation is presented and proven which makes determining the value of flexibility possible. Such an equation could be used to predict a material's flexibility prior to testing it, thus saving money and valuable time for those in research and in industry. Substantiating evidence showing the relationship between flexibility of polymers and their respective mechanical properties is presented. Further relating the known tensile properties of a given polymer to its flexibility is expanded upon by proving its relationship to the linear coefficient of thermal expansion for each polymer. Additionally, determining flexibility for polymers whose chemical structures have been compromised by respective solvents has also been investigated to predict a solvent's impact on a polymer after exposure. Polymers examined through literature include polycarbonate (PC), polystyrene (PS), teflon (PTFE), styrene acrylonitrile (SAN), acrylonitrile butadiene styrene (ABS), poly(ethersulfone) (PES), low density polyethylene (LDPE), polypropylene (PP), poly(methyl methacrylate) (PMMA), and poly(vinylidene fluoride) (PVDF). Further testing and confirmation was made using PC, PS, ABS, LDPE, PP, and PMMA.
Deformation Micro-mechanisms of Simple and Complex Concentrated FCC Alloys
The principal objective of this work was to elucidate the effect of microstructural features on the intrinsic dislocation mechanisms in two FCC alloys. First alloy Al0.1CoCrFeNi was from a new class of material known as complex concentrated alloys, particularly high entropy alloys (HEA). The second was a conventional Al-Mg-Sc alloy in ultrafine-grained (UFG) condition. In the case of HEA, the lattice possess significant lattice strain due to the atomic size variation and cohesive energy differences. Moreover, both the lattice friction stress and the Peierls barrier height are significantly larger than the conventional FCC metals and alloys. The experimental evidences, so far, provide a distinctive identity to the nature and motion of dislocations in FCC HEA as compared to the conventional FCC metals and alloys. Hence, the thermally activated dislocation mechanisms and kinetics in HEA has been studied in detail. To achieve the aim of examining the dislocation kinetics, transient tests, both strain rate jump tests and stress relaxation tests, were conducted. Anomalous behavior in dislocation kinetics was observed. Surprisingly, a large rate sensitivity of the flow stress and low activation volume of dislocations were observed, which are unparalleled as compared to conventional CG FCC metals and alloys. The observed trend has been explained in terms of the lattice distortion and dislocation energy framework. As opposed to the constant dislocation line energy and Peierls potential energy (amplitude, ΔE) in conventional metals and alloys, both line energy and Peierls potential undergo continuous variation in the case of HEA. These energy fluctuations have greatly affected the dislocation mobility and can be distinctly noted from the activation volume of dislocations. The proposed hypothesis was tested by varying the grain size and also the test temperature. Activation volume of dislocations was a strong function of temperature and increased with temperature. And the reduction in grain …
Design of a Polymeric Coating for Protecting Thermoelectric Materials from Sublimation and Oxidation
Thermoelectric (TE) devices can undergo degradation from reactions in corrosive environments and at higher operating temperatures by sublimation and oxidation. To prevent the degradation, we have applied two high temperature polymers (HTPs) as coatings for TE materials. Sintering temperatures were from 250°C to 400°C. We explain why dip coating is better technique in our study and had two potential HTPs for tests. By applying TGA (thermogravimetric analysis), we were able to figure out which HTPs have better thermal resistivity. Besides, TGA also help us to find proper curing cycles for HTPs. EDS and SEM results show that the coatings prevent oxidation and sublimation of TE materials. We also shorten HTP curing cycle time and lower the energy costs.
Design Principle on Carbon Nanomaterials Electrocatalysts for Energy Storage and Conversion
We are facing an energy crisis because of the limitation of the fossil fuel and the pollution caused by burning it. Clean energy technologies, such as fuel cells and metal-air batteries, are studied extensively because of this high efficiency and less pollution. Oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) are essential in the process of energy storage and conversion, and noble metals (e.g. Pt) are needed to catalyze the critical chemical reactions in these devices. Functionalized carbon nanomaterials such as heteroatom-doped and molecule-adsorbed graphene can be used as metal-free catalysts to replace the expensive and scarce platinum-based catalysts for the energy storage and conversion. Traditionally, experimental studies on the catalytic performance of carbon nanomaterials have been conducted extensively, however, there is a lack of computational studies to guide the experiments for rapid search for the best catalysts. In addition, theoretical mechanism and the rational design principle towards ORR and OER also need to be fully understood. In this dissertation, density functional theory calculations are performed to calculate the thermodynamic and electrochemical properties of heteroatom-doped graphene and molecule-adsorbed graphene for ORR and OER. Gibb's free energy, overpotential, charge transfer and edge effect are evaluated. The charge transfer analysis show the positive charges on the graphene surface caused by the heteroatom, hetero-edges and the adsorbed organic molecules play an essential role in improving the electrochemical properties of the carbon nanomaterials. Based on the calculations, design principles are introduced to rationally design and predict the electrochemical properties of doped graphene and molecule-adsorbed graphene as metal-free catalysts for ORR and OER. An intrinsic descriptor is discovered for the first time, which can be used as a materials parameter for rational design of the metal-free catalysts with carbon nanomaterials for energy storage and conversion. The success of the design principle provides a better …
Design Principles for Metal-Coordinated Frameworks as Electrocatalysts for Energy Storage and Conversion
In this dissertation, density functional theory calculations are performed to calculate the thermodynamic and electrochemical properties of metal coordinated frameworks for oxygen reduction reaction (ORR) and oxygen evolution reaction (OER). Gibb's free energy, overpotential, charge transfer and ligands effect are evaluated. The charge transfer analysis shows the positive charges on the metal coordinated frameworks play an essential role in improving the electrochemical properties of the metal coordinated frameworks. Based on the calculations, design principles are introduced to rationally design and predict the electrochemical properties of metal coordinated frameworks as efficient catalysts for ORR and OER. An intrinsic descriptor is discovered for the first time, which can be used as a materials parameter for rational design of the metal coordinated frameworks for energy storage and conversion. The success of the design principles provides a better understanding of the mechanism behind ORR and OER and a screening approach for the best catalyst for energy storage and conversion.
Determining the Emissivity of Roofing Samples: Asphalt, Ceramic and Coated Cedar
The goal is to perform heat measurements examine of selected roofing material samples. Those roofing materials are asphalt shingles, ceramics, and cedar. It’s important to understand the concept of heat transfer, which consists of conduction, convection, and radiation. Research work was reviewed on different infrared devices to see which one would be suitable for conducting my experiment. In this experiment, the main focus was on a specific property of radiation. That property is the emissivity, which is the amount of heat a material is able to radiate compared to a blackbody. An infrared measuring device, such as the infrared camera was used to determine the emissivity of each sample by using a measurement formula consisting of certain equations. These equations account for the emissivity, transmittance of heat through the atmosphere and temperatures of the samples, atmosphere and background. The experiment verifies how reasonable the data is compared to values in the emissivity table. A blackbody method such as electrical black tape was applied to help generate the correct data. With this data obtained, the emissivity was examined to understand what factors and parameters affect this property of the materials. This experiment was conducted using a suitable heat source to heat up the material samples to high temperature. The measurements were taken during the experiment and displayed by the IR camera. The IR images show the behavior of surface temperatures being distributed throughout the different materials. The main challenge was to determine the most accurate emissivity values for all material samples. The results obtained by the IR camera were displayed in figures and tables at different distances, which was between the heap lamp and materials. The materials exhibited different behaviors in temperature and emissivity at certain distances. The emissivity of each material varied with different temperatures. The results led to suggestions …
Developing Precipitation Hardenable High Entropy Alloys
High entropy alloys (HEAs) is a concept wherein alloys are constructed with five or more elements mixed in equal proportions; these are also known as multi-principle elements (MPEs) or complex concentrated alloys (CCAs). This PhD thesis dissertation presents research conducted to develop precipitation-hardenable high entropy alloys using a much-studied fcc-based equi-atomic quaternary alloy (CoCrFeNi). Minor additions of aluminium make the alloy amenable for precipitating ordered intermetallic phases in an fcc matrix. Aluminum also affects grain growth kinetics and Hall-Petch hardenability. The use of a combinatorial approach for assessing composition-microstructure-property relationships in high entropy alloys, or more broadly in complex concentrated alloys; using laser deposited compositionally graded AlxCrCuFeNi2 (0 < x < 1.5) complex concentrated alloys as a candidate system. The composition gradient has been achieved from CrCuFeNi2 to Al1.5CrCuFeNi2 over a length of ~25 mm, deposited using the laser engineered net shaping process from a blend of elemental powders. With increasing Al content, there was a gradual change from an fcc-based microstructure (including the ordered L12 phase) to a bcc-based microstructure (including the ordered B2 phase), accompanied with a progressive increase in microhardness. Based on this combinatorial assessment, two promising fcc-based precipitation strengthened systems have been identified; Al0.3CuCrFeNi2 and Al0.3CoCrFeNi, and both compositions were subsequently thermo-mechanically processed via conventional techniques. The phase stability and mechanical properties of these alloys have been investigated and will be presented. Additionally, the activation energy for grain growth as a function of Al content in these complex alloys has also been investigated. Change in fcc grain growth kinetic was studied as a function of aluminum; the apparent activation energy for grain growth increases by about three times going from Al0.1CoCrFeNi (3% Al (at%)) to Al0.3CoCrFeNi. (7% Al (at%)). Furthermore, Al addition leads to the precipitation of highly refined ordered L12 (γ′) and B2 precipitates in …
Device Engineering for Enhanced Efficiency from Platinum(II) Phosphorescent OLEDs
Phosphorescent organic light emitting diodes (PHOLEDs) based on efficient electrophosphorescent dopant, platinum(II)-pyridyltriazolate complex, bis[3,5-bis(2-pyridyl)-1,2,4-triazolato]platinum(II) (Pt(ptp)2) have been studied and improved with respect to power efficiency, external efficiency, chromacity and efficiency roll-off. By studying the electrical and optical behavior of the doped devices and functionality of the various constituent layers, devices with a maximum EQE of 20.8±0.2 % and power efficiency of 45.1±0.9 lm/W (77lm/W with luminaries) have been engineered. This improvement compares to devices whose emission initially could only be detected by a photomultiplier tube in a darkened environment. These devices consisted of a 65 % bis[3,5-bis(2-pyridyl)-1,2,4-triazolato]platinum(II) (Pt(ptp)2) doped into 4,4'-bis(carbazol-9-yl)triphenylamine (CBP) an EML layer, a hole transporting layer/electron blocker of 1,1-bis[(di-4-tolylamino)phenyl]cyclohexane (TAPC), an electron transport layer of 1,3,5-tris(phenyl-2-benzimidazolyl)-benzene (TPBI), and a LiF/Al cathode. These devices show the acceptable range for warm white light quadrants and qualify to be called "warm white" even w/o adding another emissive layer. Dual EML devices composed of neat Pt(ptp)2 films emitting orange and CBP: Pt(ptp)2 film emitting blue-green produced a color rendering index (CRI) of 59 and color coordinates (CIE) of (0.47,0.49) at 1000Cd/m² with power efficiency of 12.6±0.2 lm/W and EQE of 10.8±0.2 %. Devices with two blue fluorescent emission layers as singlet filters and one broad yellow emission layer from CBP: Pt(ptp)2 displayed a CRI of 78 and CIE of (0.28,0.31) at 100Cd/m² with maximum power efficiency of 6.7±0.3 lm/W and EQE of 5.7±0.2 %.
Dislocation Dynamics Simulations of Plasticity in Cu Thin Films
Strong size effects in plastic deformation of thin films have been experimentally observed, indicating non-traditional deformation mechanisms. These observations require improved understanding of the behavior of dislocation in small size materials, as they are the primary plastic deformation carrier. Dislocation dynamics (DD) is a computational method that is capable of directly simulating the motion and interaction of dislocations in crystalline materials. This provides a convenient approach to study micro plasticity in thin films. While two-dimensional dislocation dynamics simulation in thin film proved that the size effect fits Hall-Petch equation very well, there are issues related to three-dimensional size effects. In this work, three-dimensional dislocation dynamics simulations are used to study model cooper thin film deformation. Grain boundary is modeled as impenetrable obstacle to dislocation motion in this work. Both tension and cyclic loadings are applied and a wide range of size and geometry of thin films are studied. The results not only compare well with experimentally observed size effects on thin film strength, but also provide many details on dislocation processes in thin films, which could greatly help formulate new mechanisms of dislocation-based plasticity.
Dynamic Adhesion and Self-cleaning Mechanisms of Gecko Setae and Spatulae
Geckos can freely climb on walls and ceilings against their body weight at speed of over 1ms-1. Switching between attachment and detachment seem simple and easy for geckos, without considering the surface to be dry or wet, smooth or rough, dirty or clean. In addition, gecko can shed dirt particles during use, keeping the adhesive pads clean. Mimicking this biological system can lead to a new class of dry adhesives for various applications. However, gecko’s unique dry self-cleaning mechanism remains unknown, which impedes the development of self-cleaning dry adhesives. In this dissertation we provide new evidence and self-cleaning mechanism to explain how gecko shed particles and keep its sticky feet clean. First we studied the dynamic enhancement observed between micro-sized particles and substrate under dry and wet conditions. The adhesion force of soft (polystyrene) and hard (SiO2 and Al2O3) micro-particles on soft (polystyrene) and hard (fused silica and sapphire) substrates was measured using an atomic force microscope (AFM) with retraction (z-piezo) speed ranging over 4 orders of magnitude. The adhesion is strongly enhanced by the dynamic effect. When the retraction speeds varies from 0.02 µm/s to 156 µm/s, the adhesion force increases by 10% ~ 50% in dry nitrogen while it increases by 15%~70% in humid air. A dynamic model was developed to explain this dynamic effect, which agrees well with the experimental results. Similar dynamic enhancement was also observed in aqueous solution. The influence of dynamic factors related to the adhesion enhancement, such as particle inertia, viscoelastic deformations and crack propagation, was discussed to understand the dynamic enhancement mechanisms. Although particles show dynamic enhancement, Gecko fabrillar hair shows a totally different trend. The pull off forces of a single gecko seta and spatula was tested by AFM under different pull-off velocities. The result shows that both the spatula and …
Dynamic Precipitation of Second Phase Under Deformed Condition in Mg-nd Based Alloy
Magnesium alloys are the lightweight structural materials with high strength to weigh ratio that permits their application in fuel economy sensitive automobile industries. Among the several flavors of of Mg-alloys, precipitation hardenable Mg-rare earth (RE) based alloys have shown good potential due to their favorable creep resistance within a wide window of operating temperatures ranging from 150°C to 300°C. A key aspect of Mg-RE alloys is the presence of precipitate phases that leads to strengthening of such alloys. Several notable works, in literature, have been done to examine the formation of such precipitate phases. However, there are very few studies that evaluated the effect stress induced deformation on the precipitation in Mg-RE alloys. Therefore, the objective of this work is to examine influence of deformation on the precipitation of Mg-Nd based alloys. To address this problem, precipitation in two Mg-Nd based alloys, subjected to two different deformation conditions, and was examined via transmission electron microscopy (TEM) and atom probe tomography (APT). In first deformation condition, Md-2.6wt%Nd alloy was subjected to creep deformation (90MPa / 177ºC) to failure. Effect of stress-induced deformation was examined by comparing and contrasting with precipitation in non-creep tested specimens subjected to isothermal annealing (at 177ºC). In second condition, Mg-4.0Y-3.0Nd-0.5Zr (wt %) or WE43 alloy (with comparable Nd content as model Mg-Nd system) was subjected to hot rolling deformation at a sub-solvus temperature.
Effect of Alloy Composition, Free Volume and Glass Formability on the Corrosion Behavior of Bulk Metallic Glasses
Bulk metallic glasses (BMGs) have received significant research interest due to their completely amorphous structure which results in unique structural and functional properties. Absence of grain boundaries and secondary phases in BMGs results in high corrosion resistance in many different environments. Understanding and tailoring the corrosion behavior can be significant for various structural applications in bulk form as well as coatings. In this study, the corrosion behavior of several Zr-based and Fe-Co based BMGs was evaluated to understand the effect of chemistry as well as quenched in free volume on corrosion behavior and mechanisms. Presence of Nb in Zr-based alloys was found to significantly improve corrosion resistance due to the formation of a stable passive oxide. Relaxed glasses showed lower rates compared to the as-cast alloys. This was attributed to lowering of chemical potential from the reduced fraction of free volume. Potentiodynamic polarization and Electrochemical Impedance Spectroscopy (EIS) techniques helped in quantifying the corrosion rate and polarization resistance. The effect of alloy composition was quantified by extensive surface analysis using Raman spectroscopy, energy dispersive x-ray spectroscopy and auger spectroscopy. Pitting intensity was higher in the as-cast glasses than the relaxed glasses. The electrochemical behavior of a Zr-Ti-Cu-Ni-Be bulk metallic glass subjected to high strain processing was studied. High strain processing caused shear band formation and an increase in the free volume. Potentiodynamic polarization and EIS showed a strong correlation between the enthalpy of structural relaxation and corrosion rate and polarization resistance. Pitting was observed to preferentially occur on shear bands in the processed samples, while it was stochastic in unprocessed glass. The corrosion analysis of Co-Fe glasses showed an increase in corrosion current density when Fe content was increased from 0 to 7 at%. The corrosion resistance improved when Fe content was further increased to 15 at%. Similar trend was …
Effect of Friction-stir Processing on the Wear Behavior of Titanium (Ti-1Al-8V-5Fe) and Stainless Steel (A-286) Alloys
The effect of friction stir processing (FSP) on the mechanical wear behavior was investigated for Ti-1Al-8V-5Fe (Ti-185) and stainless steel (Incoloy® A-286) alloys. The Ti-185 and A-286 alloys were tested in different processing conditions, including as rolled (AR), AR+FSP, and AR+FSP+aged. A high frequency reciprocating rig was used to simulate fretting-type wear of these alloys at room temperature. The Vickers micro-hardness and wear rates were calculated and compared for each processing condition. It was determined that along with increasing hardness in the stir zones, FSP resulted in improved wear resistance for both alloys. Specifically, wear rates in the stir zones were reduced to lowest values of 1.6 x 10-5 and 5.8 x 10-7 mm3/N·m for the AR+FSP+aged Ti-185 and A-286 alloys, respectively, despite lower hardness for A-286 alloy. Mechanistic studies were conducted to determine the reason behind these improvements in wear resistance and the effect of FSP on the microstructural evolution during wear. For the Ti-185 alloy, x-ray diffraction revealed that there was a phase transformation from β-Ti (AR+FSP) to α-Ti (AR+FSP+aged). This phase decomposition resulted in the harder and stiffer Ti phase responsible for lowering of wear rate in Ti-185. While x-ray diffraction confirmed the A-286 alloy retains its austenitic structure for all conditions, scanning electron microscopy revealed completely different wear track morphology structures. There was increased coarse abrasion (galling) with the AR+aged A-286 alloy compared to the much finer-scale abrasion with the AR+FSP+aged alloy, which was responsible for smaller and less abrasive wear debris, and hence lower wear rate. Furthermore, cross-sectional focused ion beam microscopy studies inside the stir zone of AR+FSP+aged A-286 alloy determined that a) increased micro-hardness was due to FSP-induced microscopic grain refinement, and b) the corresponding wear rate decrease was due to even finer wear-induced grain refinement. With both effects combined, the level of …
Effect of Retting on Surface Chemistry and Mechanical Performance Interactions in Natural Fibers for High Performance Polymer Composites
Sustainability through replacement of non-renewable fibers with renewable fibers is an ecological need. Impact of transportation costs from South-east Asia on the life cycle analysis of the composite is detrimental. Kenaf is an easily grown crop in America. Farm based processing involves placing the harvested crop in rivers and ponds, where retting of the fibers from the plant (separation into fibers) can take 2 weeks or more. The objective of this thesis is to analyze industrially viable processes for generating fibers and examine their synergistic impact on mechanical performance, surface topography and chemistry for functional composites. Comparison has been made with commercial and conventional retting process, including alkali retting, enzymatic retting, retting in river and pond water (retting occurs by natural microbial population) with controlled microbial retting. The resulting kenaf fibers were characterized by dynamic mechanical analysis (DMA), Raman spectroscopy (FT-Raman), Fourier transform infrared spectroscopy (FT-IR), polarized optical microscopy (POM), X-ray photoelectron spectroscopy (XPS), Scanning electron microscopy (SEM) optical fluorescence microscopy, atomic force microscopy (AFM) and carbohydrate analysis. DMA results showed that pectinase and microbe treated fibers have superior viscoelastic properties compared to alkali retting. XPS, Raman, FT-IR and biochemical analysis indicated that the controlled microbial and pectinase retting was effective in removing pectin, hemicellulose and lignin. SEM, optical microscopy and AFM analysis showed the surface morphology and cross sectional architecture were preserved in pectinase retting. Experimental results showed that enzymatic retting at 48 hours and controlled microbial retting at 72 hours yield uniform and superior quality fibers compared to alkali and natural retting process. Controlled microbial retting is an inexpensive way to produce quality fibers for polymer composite reinforcement.
Effects of HALSs and Nano-ZnO Worked as UV Stabilizers of Polypropylene
This work reports the outdoor weathering performance of ultraviolet (UV)-stabilized polypropylene (PP) products (using PP resins from Encore Wire). Different hindered amine light stabilizers (HALSs) and nano-ZnO were used to stabilize PP-film-based formulations that were exposed under UV light for 6 weeks simulating for in harsh outdoor weather of Dallas, Texas, USA in 2016. Characterization of the exposed PP film products was done in terms of mechanical and friction spectroscopic properties. The PP film formulations were divided into 15 categories based on the type of HALS and nano-ZnO incorporated. This was done to derive meaningful comparison of the various film formulations. Following exposure under UV light, the lifetimes of certain formulations were determined. On the basis of the mechanical and friction properties, it was determined that generally, the HALS or nano-ZnO stabilized PP film give better properties and if those two kinds of UV stabilizers can work together.
Effects of Plasma, Temperature and Chemical Reactions on Porous Low Dielectric Films for Semiconductor Devices
Low-dielectric (k) films are one of the performance drivers for continued scaling of integrated circuit devices. These films are needed in microelectronic device interconnects to lower power consumption and minimize cross talk between metal lines that "interconnect" transistors. Low-k materials currently in production for the 45 and 65 nm node are most often organosilicate glasses (OSG) with dielectric constants near 2.8 and nominal porosities of 8-10%. The next generation of low-k materials will require k values 2.6 and below for the 45 nm device generation and beyond. The continuous decrease in device dimensions in ultra large scale integrated (ULSI) circuits have brought about the replacement of the silicon dioxide interconnect dielectric (ILD), which has a dielectric constant (k) of approximately 4.1, with low dielectric constant materials. Lowering the dielectric constant reduces the propagation delays, RC constant (R = the resistance of the metal lines; C = the line capacitance), and metal cross-talk between wires. In order to reduce the RC constants, a number of low-k materials have been studied for use as intermetal dielectrics. The k values of these dielectric materials can be lowered by replacing oxide films with carbon-based polymer films, incorporating hydrocarbon functional groups into oxide films (SiOCH films), or introducing porogens in the film during processing to create pores. However, additional integration issues such as damage to these materials caused by plasma etch, plasma ash, and wet etch processes are yet to be overcome. This dissertation reports the effects of plasma, temperature and chemical reactions on low-k SiOCH films. Plasma ash processes have been known to cause hydrophobic films to lose their hydrophobic methyl groups, rendering them to be hydrophilic. This allows the films to readily absorb moisture. Supercritical carbon dioxide (SC-CO2) can be used to transport silylating agents, hexamethyldisilazane (HMDS) and diethoxy-dimethlysilane (DEDMS), to functionalize the …
Effects of Transition Metal Oxide and Mixed-Network Formers on Structure and Properties of Borosilicate Glasses
First, the effect of transition metal oxide (e.g., V2O5, Co2O3, etc.) on the physical properties (e.g., density, glass transition temperature (Tg), optical properties and mechanical properties) and chemical durability of a simplified borosilicate nuclear waste glass was investigated. Adding V2O5 in borosilicate nuclear waste glasses decreases the Tg, while increasing the fracture toughness and chemical durability, which benefit the future formulation of nuclear waste glasses. Second, structural study of ZrO2/SiO2 substitution in silicate/borosilicate glasses was systematically conducted by molecular dynamics (MD) simulation and the quantitative structure-property relationships (QSPR) analysis to correlate structural features with measured properties. Third, for bioactive glass formulation, mixed-network former effect of B2O3 and SiO2 on the structure, as well as the physical properties and bioactivity were studied by both experiments and MD simulation. B2O3/SiO2 substitution of 45S5 and 55S5 bioactive glasses increases the glass network connectivity, correlating well with the reduction of bioactivity tested in vitro. Lastly, the effect of optical dopants on the optimum analytical performance on atom probe tomography (APT) analysis of borosilicate glasses was explored. It was found that optical doping could be an effective way to improve data quality for APT analysis with a green laser assisted system, while laser spot size is found to be critical for optimum performance. The combined experimental and simulation approach adopted in this dissertation led to a deeper understanding of complex borosilicate glass structures and structural origins of various properties.
Electrical and Structure Properties of High-κ Barium Tantalite and Aluminum Oxide Interface with Zinc Oxide for Applications in Transparent Thin Film Transistors
ZnO has generated interest for flexible electronics/optoelectronic applications including transparent thin film transistors (TFTs). For this application, low temperature processes that simultaneously yield good electrical conductivity and optical transparency and that are compatible with flexible substrates such as plastic, are of paramount significance. Further, gate oxides are a critical component of TFTs, and must exhibit low leakage currents and self-healing breakdown in order to ensure optimal TFTs switching performance and reliability. Thus, the objective of this work was twofold: (1) develop an understanding of the processing-structure-property relationships of ZnO and high-κ BaTa2O6 and Al2O3 (2) understand the electronic defect structure of BaTa2O6 /ZnO and Al2O3/ZnO interfaces and develop insight to how such interfaces may impact the switching characteristics (speed and switching power) of TFTs featuring these materials. Of the ZnO films grown by atomic layer deposition (ALD), pulsed laser deposition (PLD) and magnetron sputtering at 100-200 °C, the latter method exhibited the best combination of n-type electrical conductivity and optical transparency. These determinations were made using a combination of photoluminescence, photoluminescence excitation, absorption edge and Hall measurements. Metal-insulator-semiconductor devices were then fabricated with sputtered ZnO and high-κ BaTa2O6 and Al2O3 and the interfaces of high-κ BaTa2O6 and Al2O3 with ZnO were analyzed using frequency dependent C-V and G-V measurements. The insulator films were deposited at room temperature by magnetron sputtering using optimized processing conditions. Although the Al2O3 films exhibited a lower breakdown strength and catastrophic breakdown behavior compared to BaTa2O6/ZnO interface, the Al2O3/ZnO interface was characterized by more than an order of magnitude smaller density of interface traps and interface trapped charge. The BaTa2O6 films in addition were characterized by a significantly higher concentration of fixed oxide charge. The transition from accumulation to inversion in the Al2O3 MIS structure was considerably sharper, and occurred at less than one tenth of …
Enhancement of Light Emission from Metal Nanoparticles Embedded Graphene Oxide
A fully oxidized state of graphene behaves as a pure insulating while a pristine graphene behaves as a pure conducting. The in-between oxide state in graphene which is the controlled state of oxide behaves as a semiconducting. This is the key condition for tuning optical band gap for the better light emitting property. The controlling method of oxide in graphene structure is known as reduction which is the mixed state of sp2 and sp3 hybrid state in graphene structure. sp2 hybridized domains correspond to pure carbon-carbon bond i.e. pristine graphene while sp3 hybridized domains correspond to the oxide bond with carbon i.e. defect in graphene structure. This is the uniqueness of the graphene-base material. Graphene is a gapless material i.e. having no bandgap energy and this property prevents it from switching device applications and also from the optoelectronic devices applications. The main challenge for this material is to tune as a semiconducting which can open the optical characteristics and emit light of desired color. There may be several possibilities for the modification of graphene-base material that can tune a band gap. One way is to find semiconducting property by doping the defects into pristine graphene structure. Other way is oxides functional groups in graphene structure behaves as defects. The physical properties of graphene depend on the amount of oxides present in graphene structure. So if there are more oxides in graphene structure then this material behaves as a insulating. By any means if it can be reduced then oxides amount to achieve specific proportion of sp2 and sp3 that can emit light of desired color. Further, after achieving light emission from graphene base material, there is more possibility for the study of non-linear optical property. In this work, plasmonic effect in graphene oxide has been focused. Mainly there are two …
Evolution of Precipitates and Their Influence on the Mechanical Properties of β-Titanium Alloys
Over the last few decades, body-centered-cubic (bcc) beta (β) titanium alloys have largely been exploited as structural alloys owing to the richness in their microstructural features. These features, which lead to a unique combination of high specific strength and ductility, excellent hardenability, good fatigue performance, and corrosion resistance, make these alloys viable candidates for many applications, including aerospace, automobile, and orthopedic implants. The mechanical properties of these alloys strongly depend on the various phases present; which can be controlled by thermomechanical treatments and/or alloy design. The two most important and studied phases are the metastable ω phase and the stable α phase. The present study focuses on the microstructural evolution and the mechanical behavior of these two phases in a model β-Ti alloy, binary Ti-12wt. %Mo alloy, and a commercial β-Ti alloy, β-21S. Microstructures containing athermal and isothermal ω phases in the binary Ti-12wt. %Mo alloy are obtained under specific accurate temperature controlled heat treatments. The formation and the evolution of the ω-phase based microstructures are investigated in detail via various characterization techniques such as SEM, TEM, and 3D atom probe tomography. The mechanical behavior was investigated via quasi-static tensile loading; at room and elevated temperatures. The effect of β phase stability on the deformation behavior is then discussed. Similar to the Ti-12wt. %Mo, the formation and the evolution of the athermal and isothermal ω phases in the commercial β-21S alloy was studied under controlled heat treatments. The structural and compositional changes were tracked using SEM, TEM, HR-STEM, and 3D atom probe tomography (3D-APT). The presence of additional elements in the commercial alloy were noted to make a considerable difference in the evolution and morphology of the ω phase and also the mechanical behavior of the alloys. The Portevin-Le Chatelier (PLC) like effect was observed in iii this alloy at …
Exceptional Properties in Friction Stir Processed Beta Titanium Alloys and an Ultra High Strength Steel
The penchant towards development of high performance materials for light weighting engineering systems through various thermomechanical processing routes has been soaring vigorously. Friction stir processing (FSP) - a relatively new thermomechanical processing route had shown an excellent promise towards microstructural modification in many Al and Mg alloy systems. Nevertheless, the expansion of this process to high temperature materials like titanium alloys and steels is restricted by the limited availability of tool materials. Despite it challenges, the current thesis sets a tone for the usage of FSP to tailor the mechanical properties in titanium alloys and steels. FSP was carried out on three near beta titanium alloys, namely Ti6246, Ti185 and Tiβc with increasing β stability index, using various tool rotation rates and at a constant tool traverse speed. Microstructure and mechanical property relationship was studied using experimental techniques such as SEM, TEM, mini tensile testing and synchrotron x-ray diffraction. Two step aging on Ti6246 had resulted in an UTS of 2.2GPa and a specific strength around 500 MPa m3/mg, which is about 40% greater than any commercially available metallic material. Similarly, FSP on an ultra-high strength steel―Eglin steel had resulted in a strength greater than 2GPa with a ductility close to 10% at around 4mm from the top surface of stir zone (SZ). Experimental techniques such as microhardness, mini-tensile testing and SEM were used to correlate the microstructure and properties observed inside SZ and HAZ's of the processed region. A 3D temperature modeling was used to predict the peak temperature and cooling rates during FSP. The exceptional strength ductility combinations inside the SZ is believed to be because of mixed microstructure comprised of various volume fractions of phases such as martensite, bainite and retained austenite.
Fabrication of Large-Scale and Thickness-Modulated Two-Dimensional Transition Metal Dichalcogenides [2D TMDs] Nanolayers
This thesis describes the fabrication and characterization of two-dimensional transition dichalcogenides (2D TMDs) nanolayers for various applications in electronic and opto-electronic devices applications. In Chapter 1, crystal and optical structure of TMDs materials are introduced. Many TMDs materials reveal three structure polytypes (1T, 2H, and 3R). The important electronic properties are determined by the crystal structure of TMDs; thus, the information of crystal structure is explained. In addition, the detailed information of photon vibration and optical band gap structure from single-layer to bulk TMDs materials are introduced in this chapter. In Chapter 2, detailed information of physical properties and synthesis techniques for molybdenum disulfide (MoS2), tungsten disulfide (WS2), and molybdenum ditelluride (MoTe2) nanolayers are explained. The three representative crystal structures are trigonal prismatic (hexagonal, H), octahedral (tetragonal, T), and distorted structure (Tʹ). At room temperature, the stable structure of MoS2 and WS2 is semiconducting 2H phase, and MoTe2 can reveal both 2H (semiconducting phase) and 1Tʹ (semi-metallic phase) phases determined by the existence of strains. In addition, the pros and cons of the synthesis techniques for nanolayers are discussed. In Chapter 3, the topic of synthesized large-scale MoS2, WS2, and MoTe2 films is considered. For MoS2 and WS2 films, the layer thickness is modulated from single-layer to multi-layers. The few-layer MoTe2 film is synthesized with two different phases (2H or 1Tʹ). The all TMDs films are fabricated using two-step chemical vapor deposition (CVD) method. The analyses of atomic force microscopy (AFM), high-resolution transmission electron microscopy (HRTEM), photoluminescence (PL), and Raman spectroscopy confirm that the synthesis of high crystalline MoS2, WS2, and MoTe2 films are successful. The electronic properties of both MoS2 and WS2 exhibit a p-type conduction with relatively high field effect mobility and current on/off ratio. In Chapter 4, vertically-stacked few-layer MoS2/WS2 heterostructures on SiO2/Si and flexible polyethylene terephthalate …
Fatigue Behavior of A356 Aluminum Alloy
Metal fatigue is a recurring problem for metallurgists and materials engineers, especially in structural applications. It has been responsible for many disastrous accidents and tragedies in history. Understanding the micro-mechanisms during cyclic deformation and combating fatigue failure has remained a grand challenge. Environmental effects, like temperature or a corrosive medium, further worsen and complicate the problem. Ultimate design against fatigue must come from a materials perspective with a fundamental understanding of the interaction of microstructural features with dislocations, under the influence of stress, temperature, and other factors. This research endeavors to contribute to the current understanding of the fatigue failure mechanisms. Cast aluminum alloys are susceptible to fatigue failure due to the presence of defects in the microstructure like casting porosities, non-metallic inclusions, non-uniform distribution of secondary phases, etc. Friction stir processing (FSP), an emerging solid state processing technique, is an effective tool to refine and homogenize the cast microstructure of an alloy. In this work, the effect of FSP on the microstructure of an A356 cast aluminum alloy, and the resulting effect on its tensile and fatigue behavior have been studied. The main focus is on crack initiation and propagation mechanisms, and how stage I and stage II cracks interact with the different microstructural features. Three unique microstructural conditions have been tested for fatigue performance at room temperature, 150 °C and 200 °C. Detailed fractography has been performed using optical microscopy, scanning electron microscopy (SEM) and electron back scattered diffraction (EBSD). These tools have also been utilized to characterize microstructural aspects like grain size, eutectic silicon particle size and distribution. Cyclic deformation at low temperatures is very sensitive to the microstructural distribution in this alloy. The findings from the room temperature fatigue tests highlight the important role played by persistent slip bands (PSBs) in fatigue crack initiation. At room …
First Principles Calculations of the Site Substitution Behavior in Gamma Prime Phase in Nickel Based Superalloys
Nickel based superalloys have superior high temperature mechanical strength, corrosion and creep resistance in harsh environments and found applications in the hot sections as turbine blades and turbine discs in jet engines and gas generator turbines in the aerospace and energy industries. The efficiency of these turbine engines depends on the turbine inlet temperature, which is determined by the high temperature strength and behavior of these superalloys. The microstructure of nickel based superalloys usually contains coherently precipitated gamma prime (?) Ni3Al phase within the random solid solution of the gamma () matrix, with the ? phase being the strengthening phase of the superalloys. How the alloying elements partition into the and ? phases and especially in the site occupancy behaviors in the strengthening ? phases play a critical role in their high temperature mechanical behaviors. The goal of this dissertation is to study the site substitution behavior of the major alloying elements including Cr, Co and Ti through first principles based calculations. Site substitution energies have been calculated using the anti-site formation, the standard defect formation formalism, and the vacancy formation based formalism. Elements such as Cr and Ti were found to show strong preference for Al sublattice, whereas Co was found to have a compositionally dependent site preference. In addition, the interaction energies between Cr-Cr, Co-Co, Ti-Ti and Cr-Co atoms have also been determined. Along with the charge transfer, chemical bonding and alloy chemistry associated with the substitutions has been investigated by examining the charge density distributions and electronic density of states to explain the chemical nature of the site substitution. Results show that Cr and Co atoms prefer to be close by on either Al sublattice or on a Ni-Al mixed lattice, suggesting a potential tendency of Cr and Co segregation in the ? phase.
First Principles Study of Metastable Beta Titanium Alloys
The high temperature BCC phase (b) of titanium undergoes a martensitic transformation to HCP phase (a) upon cooling, but can be stabilized at room temperature by alloying with BCC transition metals such as Mo. There exists a metastable composition range within which the alloyed b phase separates into a + b upon equilibrium cooling but not when rapidly quenched. Compositional partitioning of the stabilizing element in as-quenched b microstructure creates nanoscale precipitates of a new simple hexagonal w phase, which considerably reduces ductility. These phase transformation reactions have been extensively studied experimentally, yet several significant questions remain: (i) The mechanism by which the alloying element stabilizes the b phase, thwarts its transformation to w, and how these processes vary as a function of the concentration of the stabilizing element is unclear. (ii) What is the atomistic mechanism responsible for the non-Arrhenius, anomalous diffusion widely observed in experiments, and how does it extend to low temperatures? How does the concentration of the stabilizing elements alter this behavior? There are many other w forming alloys that such exhibit anomalous diffusion behavior. (iii) A lack of clarity remains on whether w can transform to a -phase in the crystal bulk or if it occurs only at high-energy regions such as grain boundaries. Furthermore, what is the nature of the a phase embryo? (iv) Although previous computational results discovered a new wa transformation mechanism in pure Ti with activation energy lower than the classical Silcock pathway, it is at odds with the a / b / w orientation relationship seen in experiments. First principles calculations based on density functional theory provide an accurate approach to study such nanoscale behavior with full atomistic resolution, allowing investigation of the complex structural and chemical effects inherent in the alloyed state. In the present work, a model Ti-Mo …
Friction Stir Welding of Dissimilar Metals
Dissimilar metals joining have been used in many industry fields for various applications due to their technique and beneficial advantages, such as aluminum-steel and magnesium-steel joints for reducing automobile weight, aluminum-copper joint for reducing material cost in electrical components, steel-copper joints for usage in nuclear power plant, etc. The challenges in achieving dissimilar joints are as below. (1) Big difference in physical properties such as melting point and coefficient of thermal expansion led to residual stress and defects. (2) The miscibility issues resulted in either brittle intermetallic compound layer at the welded interface for miscible combinations (such as, aluminum-steel, aluminum-copper, aluminum-titanium, etc.) or no metallurgical bonding for immiscible combinations (such as magnesium-copper, steel-copper, etc.). For metallurgical miscible combinations, brittle intermetallic compounds formed at the welded interface created the crack initiation and propagation path during deformational tests. (3) Stress concentration appeared at the welded interface region during tensile testing due to mismatch in elastic properties of dissimilar materials. In this study, different combinations of dissimilar metals were joined with friction stir welding. Lap welding of 6022-T4 aluminum alloy/galvanized mild steel sheets and 6022-T4 aluminum alloy/DP600 steel sheets were achieved via friction stir scribe technology. The interlocking feature determining the fracture mode and join strength was optimized. Reaction layer (intermetallic compounds layer) between the dissimilar metals were investigated. Butt welding of 5083-H116 aluminum alloy/HSLA-65 steel, 2024-T4 aluminum alloy/316 stainless steel, AZ31/316 stainless steel, WE43/316 stainless steel and 110 copper/316 stainless steel were obtained by friction stir welding. The critical issues in dissimilar metals butt joining were summarized and analyzed in this study including IMC and stress concentration.
Friction Stir Welding of High Strength Precipitation Strengthened Aluminum Alloys
Rising demand for improved fuel economy and structural efficiency are the key factors for use of aluminum alloys for light weighting in aerospace industries. Precipitation strengthened 2XXX and 7XXX aluminum alloys are the key aluminum alloys used extensively in aerospace industry. Welding and joining is the critical step in manufacturing of integrated structures. Joining of precipitation strengthened aluminum alloys using conventional fusion welding techniques is difficult and rather undesirable in as it produces dendritic microstructure and porosities which can undermine the structural integrity of weldments. Friction stir welding, invented in 1991, is a solid state joining technique inherently benefitted to reduces the possibility of common defects associated with fusion based welding techniques. Weldability of various 2XXX and 7XXX aluminum alloys via friction stir welding was investigated. Microstructural and mechanical property evolution during welding and after post weld heat treatment was studied using experimental techniques such as transmission electron microscopy, differential scanning calorimetry, hardness testing, and tensile testing. Various factors such as peak welding temperature, cooling rate, external cooling methods (thermal management) which affects the strength of the weldment were studied. Post weld heat treatment of AL-Mg-Li alloy produced joint as strong as the parent material. Modified post weld heat treatment in case of welding of Al-Zn-Mg alloy also resulted in near 100% joint efficiency whereas the maximum weld strength achieved in case of welds of Al-Cu-Li alloys was around 80-85% of parent material strength. Low dislocation density and high nucleation barrier for the precipitates was observed to be responsible for relatively low strength recovery in Al-Cu-Li alloys as compared to Al-Mg-Li and Al-Zn-Mg alloys.
Friction Stir Welding of Precipitation Strengthened Aluminum 7449 Alloys
The Al-Zn-Mg-Cu (7XXX series) alloys are amongst the strongest aluminum available. However, they are considered unweldable with conventional fusion techniques due to the negative effects that arise with conventional welding, including hydrogen porosity, hot cracking, and stress corrosion cracking. For this reason, friction stir welding has emerged as the preferred technique to weld 7XXX series alloys. Aluminum 7449 is one of the highest strength 7XXX series aluminum alloy. This is due to its higher zinc content, which leads to a higher volume fraction of eta' precipitates. It is typically used in a slight overaged condition since it exhibits better corrosion resistance. In this work, the welds of friction stir welded aluminum 7449 were studied extensively. Specific focus was placed in the heat affected zone (HAZ) and nugget. Thermocouples were used in the heat affected zone for three different depths to obtain thermal profiles as well as cooling/heating profiles. Vicker microhardness testing, transmission electron microscope (TEM), and differential scanning calorimeter (DSC) were used to characterize the welds. Two different tempers of the alloy were used, a low overaged temper and a high overaged temper. A thorough comparison of the two different tempers was done. It was found that highly overaged aluminum 7449 tempers show better properties for friction stir welding. A heat gradient along with a high conducting plate (Cu) used at the bottom of the run, resulted in welds with two separate microstructures in the nugget. Due to the microstructure at the bottom of the nugget, higher strength than the base metal is observed. Furthermore, the effects of natural aging and artificial aging were studied to understand re-precipitation. Large improvements in strength are observed after natural aging throughout the welds, including improvements in the HAZ.
Gamma Prime Precipitation Mechanisms and Solute Partitioning in Ni-base Alloys
Nickel-base superalloys have been emerged as materials for gas turbines used for jet propulsion and electricity generation. The strength of the superalloys depends mainly from an ordered precipitates of L12 structure, so called gamma prime (γ’) dispersed within the disorder γ matrix. The Ni-base alloys investigated in this dissertation comprise both model alloy systems based on Ni-Al-Cr and Ni-Al-Co as well as the commercial alloy Rene N5. Classical nucleation and growth mechanism dominates the γ’ precipitation process in slowed-cooled Ni-Al-Cr alloys. The effect of Al and Cr additions on γ’ precipitate size distribution as well as morphological and compositional development of γ’ precipitates were characterized by coupling transmission electron microscopy (TEM) and 3D atom probe (3DAP) techniques. Rapid quenching Ni-Al-Cr alloy experiences a non-classical precipitation mechanism. Structural evolution of the γ’ precipitates formed and subsequent isothermal annealing at 600 °C were investigated by coupling TEM and synchrotron-based high-energy x-ray diffraction (XRD). Compositional evolution of the non-classically formed γ’ precipitates was determined by 3DAP and Langer, Bar-on and Miller (LBM) method. Besides homogeneous nucleation, the mechanism of heterogeneous γ’ precipitation involving a discontinuous precipitation mechanism, as a function of temperature, was the primary focus of study in case of the Ni-Al-Co alloy. This investigation coupled SEM, SEM-EBSD, TEM and 3DAP techniques. Lastly, solute partitioning and enrichment of minor refractory elements across/at the γ/ γ’ interfaces in the commercially used single crystal Rene N5 superalloy was investigated by using an advantage of nano-scale composition investigation of 3DAP technique.
Growth Mechanisms, and Mechanical and Thermal Properties of Junctions in 3D Carbon Nanotube-Graphene Nano-Architectures
Junctions are the key component for 3D carbon nanotube (CNT)-graphene seamless hybrid nanostructures. Growth mechanism of junctions of vertical CNTs growing from graphene in the presence of iron catalysts was simulated via quantum mechanical molecular dynamics (QM/MD) methods. CNTs growth from graphene with iron catalysts is based on a ‘‘base-growth’’ mechanism, and the junctions were the mixture of C-C and Fe-C covalent bonds. Pure C-C bonded junctions could be obtained by moving the catalyst during CNT growth or etching and annealing after growth. The growth process of 3D CNT-graphene junctions on copper templates with nanoholes was simulated with molecular dynamic (MD) simulation. There are two mechanisms of junction formation: (i) CNT growth over the holes that are smaller than 3 nm, and (ii) CNT growth inside the holes that are larger than 3 nm. The growth process of multi-layer filleted CNT-graphene junctions on the Al2O3 template was also simulated with MD simulation. A simple analytical model is developed to explain that the fillet takes the particular angle (135°). MD calculations show that 135° filleted junction has the largest fracture strength and thermal conductivity at room temperature compared to junctions with 90°,120°, 150°, and 180° fillets. The tensile strengths of the as-grown C–C junctions, as well as the junctions embedded with metal nanoparticles (catalysts), were determined by a QM/MD method. Metal catalysts remaining in the junctions significantly reduce the fracture strength and fracture energy. Moreover, the thermal conductivities of the junctions were also calculated by MD method. Metal catalysts remaining in the junctions considerably lower the thermal conductivity of the 3D junctions.
Growth, Structure and Tribological Properties of Atomic Layer Deposited Lubricious Oxide Nanolaminates
Friction and wear mitigation is typically accomplished by introducing a shear accommodating layer (e.g., a thin film of liquid) between surfaces in sliding and/or rolling contacts. When the operating conditions are beyond the liquid realm, attention turns to solid coatings. Solid lubricants have been widely used in governmental and industrial applications for mitigation of wear and friction (tribological properties). Conventional examples of solid lubricants are MoS2, WS2, h-BN, and graphite; however, these and some others mostly perform best only for a limited range of operating conditions, e.g. ambient air versus dry nitrogen and room temperature versus high temperatures. Conversely, lubricious oxides have been studied lately as good potential candidates for solid lubricants because they are thermodynamically stable and environmentally robust. Oxide surfaces are generally inert and typically do not form strong adhesive bonds like metals/alloys in tribological contacts. Typical of these oxides is ZnO. The interest in ZnO is due to its potential for utility in a variety of applications. To this end, nanolaminates of ZnO, Al2O3, ZrO2 thin films have been deposited at varying sequences and thicknesses on silicon substrates and high temperature (M50) bearing steels by atomic layer deposition (ALD). The top lubricious, nanocrystalline ZnO layer was structurally-engineered to achieve low surface energy {0002}-orientated grain that provided low sliding friction coefficients (0.2 to 0.3), wear factors (range of 10-7 to 10-8 mm3/Nm) and good rolling contact fatigue resistance. The Al2O3 was intentionally made amorphous to achieve the {0002} preferred orientation while {101}-orientated tetragonal ZrO2 acted as a high toughness/load bearing layer. It was determined that the ZnO defective structure (oxygen sub-stoichiometric with growth stacking faults) aided in shear accommodation by re-orientating the nanocrystalline grains where they realigned to create new friction-reducing surfaces. Specifically, high resolution transmission electron microscopy (HRTEM) inside the wear surfaces revealed in an increase in …
High Temperature Water as an Etch and Clean for SiO2 and Si3N4
An environmentally friendly, and contamination free process for etching and cleaning semiconductors is critical to future of the IC industry. Under the right conditions, water has the ability to meet these requirements. Water becomes more reactive as a function of temperature in part because the number of hydronium and hydroxyl ions increase. As water approaches its boiling point, the concentration of these species increases over seven times their concentrations at room temperature. At 150 °C, when the liquid state is maintained, these concentrations increase 15 times over room temperature. Due to its enhanced reactivity, high temperature water (HTW) has been studied as an etch and clean of thermally grown SiO2, Si3N4, and low-k films. High temperature deuterium oxide (HT-D2O) behaves similarly to HTW; however, it dissociates an order of magnitude less than HTW resulting in an equivalent reduction in reactive species. This allowed for the effects of reactive specie concentration on etch rate to be studied, providing valuable insight into how HTW compares to other high temperature wet etching processes such as hot phosphoric acid (HPA). Characterization was conducted using Fourier transform infrared spectroscopy (FTIR) to determine chemical changes due to etching, spectroscopic ellipsometry to determine film thickness, profilometry to measure thickness change across the samples, scanning electron microscopy (SEM), contact angle to measure changes in wetting behavior, and UV-Vis spectroscopy to measure dissolved silica in post etch water. HTW has demonstrated the ability to effective etch both SiO2 and Si3N4, HT-D2O also showed similar etch rates of Si3N4 indicating that a threshold reactive specie concentration is needed to maximize etch rate at a given temperature and additional reactive species do not further increase the etch rate. Because HTW has no hazardous byproducts, high temperature water could become a more environmentally friendly etchant of SiO2 and Si3N4 thin films.
Back to Top of Screen