You limited your search to:

  Access Rights: Use restricted to UNT Community
 Decade: 2010-2019
 Degree Discipline: Computer Engineering
 Collection: UNT Theses and Dissertations
A Driver, Vehicle and Road Safety System Using Smartphones

A Driver, Vehicle and Road Safety System Using Smartphones

Access: Use of this item is restricted to the UNT Community.
Date: May 2012
Creator: Gozick, Brandon
Description: As vehicle manufacturers continue to increase their emphasis on safety with advanced driver assistance systems (ADAS), I propose a ubiquitous device that is able to analyze and advise on safety conditions. Mobile smartphones are increasing in popularity among younger generations with an estimated 64% of 25-34 year olds already using one in their daily lives. with over 10 million car accidents reported in the United States each year, car manufacturers have shifted their focus of a passive approach (airbags) to more active by adding features associated with ADAS (lane departure warnings). However, vehicles manufactured with these sensors are not economically priced while older vehicles might only have passive safety features. Given its accessibility and portability, I target a mobile smartphone as a device to compliment ADAS that can bring a driver assist to any vehicle without regards for any on-vehicle communication system requirements. I use the 3-axis accelerometer of multiple Android based smartphone to record and analyze various safety factors which can influence a driver while operating a vehicle. These influences with respect to the driver, vehicle and road are lane change maneuvers, vehicular comfort and road conditions. Each factor could potentially be hazardous to the health of the driver, ...
Contributing Partner: UNT Libraries
Evaluating the Feasibility of Accelerometers in Hand Gestures Recognition

Evaluating the Feasibility of Accelerometers in Hand Gestures Recognition

Access: Use of this item is restricted to the UNT Community.
Date: December 2014
Creator: Karlaputi, Sarada.
Description: Gesture recognition plays an important role in human computer Interaction for intelligent computing. Major applications like Gaming, Robotics and Automated Homes uses gesture recognition techniques which diminishes the usage of mechanical devices. The main goal of my thesis is to interpret SWAT team gestures using different types of sensors. Accelerometer and flex sensors were explored extensively to build a prototype for soldiers to communicate in the absence of line of sight. Arm movements were recognized by flex sensors and motion gestures by Accelerometers. Accelerometers are used to measure acceleration in respect to movement of the sensor in 3D. Flex sensors changes its resistance based on the amount of bend in the sensor. SVM is the classification algorithm used for classification of the samples. LIBSVM (Library for Support Vector Machines) is integrated software for support vector classification, regression and distribution estimation which supports multi class classification. Sensors data is connected to the WI micro dig to digitize the signal and to transmit it wirelessly to the computing device. Feature extraction and Signal windowing were the two major factors which contribute for the accuracy of the system. Mean Average value and Standard Deviation are the two features considered for accelerometer sensor data ...
Contributing Partner: UNT Libraries