You limited your search to:

 Department: Department of Physics
 Degree Discipline: Physics
 Degree Level: Doctoral
 Collection: UNT Theses and Dissertations
Accelerator Mass Spectrometry Studies of Highly Charged Molecular Ions

Accelerator Mass Spectrometry Studies of Highly Charged Molecular Ions

Date: December 1994
Creator: Kim, Yong-Dal
Description: The existence of singly, doubly, and triply charged diatomic molecular ions was observed by using an Accelerator Mass Spectrometry (AMS) technique. The mean lifetimes of 3 MeV boron diatomic molecular ions were measured. No isotopic effects on the mean lifetimes of boron diatomic molecules were observed for charge state 3+. Also, the mean lifetime of SiF^3+ was measured.
Contributing Partner: UNT Libraries
Anderson Localization in Two-Channel Wires with Correlated Disorder: DNA as an Application

Anderson Localization in Two-Channel Wires with Correlated Disorder: DNA as an Application

Date: December 2007
Creator: Bagci, V. M. Kemal
Description: This research studied the Anderson localization of electrons in two-channel wires with correlated disorder and in DNA molecules. It involved an analytical calculation part where the formula for the inverse localization length for electron states in a two-channel wire is derived. It also involved a computational part where the localization length is calculated for some DNA molecules. Electron localization in two-channel wires with correlated disorder was studied using a single-electron tight-binding model. Calculations were within second-order Born-approximation to second-order in disorder parameters. An analytical expression for localization length as a functional of correlations in potentials was found. Anderson localization in DNA molecules were studied in single-channel wire and two-channel models for electron transport in DNA. In both of the models, some DNA sequences exhibited delocalized electron states in their energy spectrum. Studies with two-channel wire model for DNA yielded important link between electron localization properties and genetic information.
Contributing Partner: UNT Libraries
Angular Dependence of the Stopping Processes and the Yields of Ion-induced Electron Emission from Channeled MEV Protons in <100> Silicon Foils

Angular Dependence of the Stopping Processes and the Yields of Ion-induced Electron Emission from Channeled MEV Protons in <100> Silicon Foils

Date: December 1993
Creator: Zhao, Zhiyong
Description: The present work reports the experimental evidence of anomalous energy loss, energy straggling, and the corresponding ion-induced electron emission yields of channeled protons in silicon.
Contributing Partner: UNT Libraries
Anisotropic Relaxation Time for Solids with Ellipsoidal Fermi Surfaces

Anisotropic Relaxation Time for Solids with Ellipsoidal Fermi Surfaces

Date: May 1971
Creator: Fuchser, Troy Denrich
Description: Many solids have Fermi surfaces which are approximated as ellipsoids. A comprehensive solution for the magnetoconductivity of an ellipsoid is obtained which proves the existence of a relaxation time tensor which can be anisotropic and which is a function of energy only.
Contributing Partner: UNT Libraries
Carbon nanotube/microwave interactions and applications to hydrogen fuel cells.

Carbon nanotube/microwave interactions and applications to hydrogen fuel cells.

Access: Use of this item is restricted to the UNT Community.
Date: May 2004
Creator: Imholt, Timothy James
Description: One of the leading problems that will be carried into the 21st century is that of alternative fuels to get our planet away from the consumption of fossil fuels. There has been a growing interest in the use of nanotechnology to somehow aid in this progression. There are several unanswered questions in how to do this. It is known that carbon nanotubes will store hydrogen but it is unclear how to increase that storage capacity and how to remove this hydrogen fuel once stored. This document offers some answers to these questions. It is possible to implant more hydrogen in a nanotube sample using a technique of ion implantation at energy levels ~50keV and below. This, accompanied with the rapid removal of that stored hydrogen through the application of a microwave field, proves to be one promising avenue to solve these two unanswered questions.
Contributing Partner: UNT Libraries
Chaos and Momentum Diffusion of the Classical and Quantum Kicked Rotor

Chaos and Momentum Diffusion of the Classical and Quantum Kicked Rotor

Date: August 2005
Creator: Zheng, Yindong
Description: The de Broglie-Bohm (BB) approach to quantum mechanics gives trajectories similar to classical trajectories except that they are also determined by a quantum potential. The quantum potential is a "fictitious potential" in the sense that it is part of the quantum kinetic energy. We use quantum trajectories to treat quantum chaos in a manner similar to classical chaos. For the kicked rotor, which is a bounded system, we use the Benettin et al. method to calculate both classical and quantum Lyapunov exponents as a function of control parameter K and find chaos in both cases. Within the chaotic sea we find in both cases nonchaotic stability regions for K equal to multiples of π. For even multiples of π the stability regions are associated with classical accelerator mode islands and for odd multiples of π they are associated with new oscillator modes. We examine the structure of these regions. Momentum diffusion of the quantum kicked rotor is studied with both BB and standard quantum mechanics (SQM). A general analytical expression is given for the momentum diffusion at quantum resonance of both BB and SQM. We obtain agreement between the two approaches in numerical experiments. For the case of nonresonance the ...
Contributing Partner: UNT Libraries
Characterization and Field Emission Properties of Mo2C and Diamond Thin Films Deposited on Mo Foils and Tips by Electrophoresis

Characterization and Field Emission Properties of Mo2C and Diamond Thin Films Deposited on Mo Foils and Tips by Electrophoresis

Date: August 1999
Creator: Rouse, Ambrosio A., 1960-
Description: In this dissertation M02C and diamond films deposited by electrophoresis on flat Mo foils and tips have been studied to determine their suitability as field emission tips.
Contributing Partner: UNT Libraries
Characterization, properties and applications of novel nanostructured hydrogels.

Characterization, properties and applications of novel nanostructured hydrogels.

Access: Use of this item is restricted to the UNT Community.
Date: December 2006
Creator: Tang, Shijun
Description: The characterization, properties and applications of the novel nanostructured microgel (nanoparticle network and microgel crystal) composed of poly-N-isopropylacrylanmide-co-allylamine (PNIPAM-co-allylamine) and PNIPAM-co-acrylic acid(AA) have been investigated. For the novel nanostructured hydrogels with the two levels of structure: the primary network inside each individual particle and the secondary network of the crosslinked nanoparticles, the new shear modulus, drug release law from hydrogel with heterogeneous structure have been studied. The successful method for calculating the volume fraction related the phase transition of colloid have been obtained. The kinetics of crystallization in an aqueous dispersion of PNIPAM particles has been explored using UV-visible transmission spectroscopy. This dissertation also includes the initial research on the melting behavior of colloidal crystals composed of PNIPAM microgels. Many new findings in this study area have never been reported before. The theoretical model for the columnar crystal growth from the top to bottom of PNIPAM microgel has been built, which explains the growth mechanism of the novel columnar hydrogel colloidal crystals. Since the unique structure of the novel nanostructured hydrogels, their properties are different with the conventional hydrogels and the hard-sphere-like system. The studies and results in this dissertation have the important significant for theoretical study and valuable application ...
Contributing Partner: UNT Libraries
Charge Collection Studies on Integrated Circuit Test Structures using Heavy-Ion Microbeams and MEDICI Simulation Calculations

Charge Collection Studies on Integrated Circuit Test Structures using Heavy-Ion Microbeams and MEDICI Simulation Calculations

Date: May 2000
Creator: Guo, Baonian
Description: Ion induced charge collection dynamics within Integrated Circuits (ICs) is important due to the presence of ionizing radiation in the IC environment. As the charge signals defining data states are reduced by voltage and area scaling, the semiconductor device will naturally have a higher susceptibility to ionizing radiation induced effects. The ionizing radiation can lead to the undesired generation and migration of charge within an IC. This can alter, for example, the memory state of a bit, and thereby produce what is called a "soft" error, or Single Event Upset (SEU). Therefore, the response of ICs to natural radiation is of great concern for the reliability of future devices. Immunity to soft errors is listed as a requirement in the 1997 National Technology Roadmap for Semiconductors prepared by the Semiconductor Industry Association in the United States. To design more robust devices, it is essential to create and test accurate models of induced charge collection and transport in semiconductor devices. A heavy ion microbeam produced by an accelerator is an ideal tool to study charge collection processes in ICs and to locate the weak nodes and structures for improvement through hardening design. In this dissertation, the Ion Beam Induced Charge Collection ...
Contributing Partner: UNT Libraries
Charge State Dependence of M-Shell X-Ray Production in 67Ho by 2-12 MeV Carbon Ions

Charge State Dependence of M-Shell X-Ray Production in 67Ho by 2-12 MeV Carbon Ions

Date: August 1994
Creator: Sun, Hsueh-Li
Description: The charge state dependence of M-shell x-ray production cross sections of 67HO bombarded by 2-12 MeV carbon ions with and without K-vacancies are reported. The experiment was performed using an NEC 9SDH-2 tandem accelerator at the Ion Beam Modification and Analysis Laboratory of the University of North Texas. The high charge state carbon ions were produced by a post-accelerator stripping gas cell. Ultra-clean holmium targets were used in ion-atom collision to generate M-shell x rays at energies from 1.05 to 1.58 keV. The x-ray measurements were made with a windowless Si(Li) x-ray detector that was calibrated using radiative sources, particle induced x-ray emission (PIXE), and the atomic field bremsstrahlung (AFB) techniques.
Contributing Partner: UNT Libraries
FIRST PREV 1 2 3 4 5 NEXT LAST