Search Results

open access

Ab Initio and Density Functional Investigation of the Conformer Manifold of Melatonin and a Proposal for a Simple Dft-based Diagnostic for Nondynamical Correlation

Description: In this work we address two problems in computational chemistry relevant to biomolecular modeling. In the first project, we consider the conformer space of melatonin as a a representative example of “real-life” flexible biomolecules. Geometries for all 52 unique conformers are optimized using spin-component scaled MP2, and then relative energies are obtained at the CCSD (T) level near the complete basis set limit. These are then used to validate a variety of DFT methods with and without empiric… more
Date: August 2013
Creator: Fogueri, Uma
Partner: UNT Libraries
open access

Accuracy and Efficiency in Computational Chemistry: The Correlation Consistent Composite Approach

Description: One of the central concerns of computational chemistry is that of efficiency (i.e. the development of methodologies which will yield increased accuracy of prediction without requiring additional computational resources – RAM, disk space, computing time). Though the equations of quantum mechanics are known, the solutions to these equations often require a great deal of computing power. This dissertation primarily concerns the theme of improved computational efficiency (i.e. the achievement of g… more
Date: August 2011
Creator: Wilson, Brent R.
Partner: UNT Libraries
open access

Accurate and Reliable Prediction of Energetic and Spectroscopic Properties Via Electronic Structure Methods

Description: Computational chemistry has led to the greater understanding of the molecular world, from the interaction of molecules, to the composition of molecular species and materials. Of the families of computational chemistry approaches available, the main families of electronic structure methods that are capable of accurate and/or reliable predictions of energetic, structural, and spectroscopic properties are ab initio methods and density functional theory (DFT). The focus of this dissertation is to … more
Date: August 2013
Creator: Laury, Marie L.
Partner: UNT Libraries
open access

Accurate Energetics Across the Periodic Table Via Quantum Chemistry

Description: Greater understanding and accurate predictions of structural, thermochemical, and spectroscopic properties of chemical compounds is critical for the advancements of not only basic science, but also in applications needed for the growth and health of the U.S. economy. This dissertation includes new ab initio composite approaches to predict accurate energetics of lanthanide-containing compounds including relativistic effects, and optimization of parameters for semi-empirical methods for transitio… more
Date: December 2015
Creator: Peterson, Charles Campbell
Partner: UNT Libraries
open access

Advancements in Instrumentation for Fourier Transform Microwave Spectroscopy

Description: The efforts of my research have led to the successful construction of several instruments that have helped expand the field of microwave spectroscopy. The classic Balle-Flygare spectrometer has been modified to include two different sets of antenna to operate in the frequency ranges 6-18 GHz and 18-26 GHz, allowing it to function for a large range without having to break vacuum. This modified FTMW instrument houses two low noise amplifiers in the vacuum chamber to allow for the LNAs to be as cl… more
Date: August 2011
Creator: Dewberry, Christopher Thomas
Partner: UNT Libraries
open access

Application of the Correlation Consistent Composite Approach to Biological Systems and Noncovalent Interactions

Description: Advances in computing capabilities have facilitated the application of quantum mechanical methods to increasingly larger and more complex chemical systems, including weakly interacting and biologically relevant species. One such ab initio-based composite methodology, the correlation consistent composite approach (ccCA), has been shown to be reliable for the prediction of enthalpies of formation and reaction energies of main group species in the gas phase to within 1 kcal mol-1, on average, of w… more
Date: May 2015
Creator: Riojas, Amanda G.
Partner: UNT Libraries
open access

Chirped-Pulse Fourier Transform Microwave Spectroscopy of Fluoroiodoacetonitrile and Chloropentafluoroacetone

Description: This work focuses on finding the complete iodine and nitrogen nuclear electric quadrupole coupling tensors for fluoroiodoacetonitrile using chirped-pulse Fourier transform microwave spectroscopy. Fluoroiodoacetonitrile contains two hyperfine nuclei, iodine (I=5/2) and nitrogen (I=1) and the spectra were observed with great resolution. A total of 499 transitions were observed for this molecule. The a, b and c rotational constants were obtained. A study of chloropentafluoroacetone was also done u… more
Date: December 2010
Creator: Kadiwar, Gautam
Partner: UNT Libraries
open access

Computational Modeling of Small Molecules

Description: Computational chemistry lies at the intersection of chemistry, physics, mathematics, and computer science, and can be used to explain the behavior of atoms and molecules, as well as to augment experiment. In this work, computational chemistry methods are used to predict structural and energetic properties of small molecules, i.e. molecules with less than 60 atoms. Different aspects of computational chemistry are examined in this work. The importance of examining the converged orbitals obtained … more
Date: December 2015
Creator: Weber, Rebecca J.
Partner: UNT Libraries
open access

Computational Studies on Group 14 Elements (C, Si and Ge) in Organometallic and Biological Compounds.

Description: A series of computational studies were carried out on Group 14 (C, Si and Ge) elements in organometallic and biological compounds. Theoretical studies on classical and H-bridged A3H3+ (A=C, Si and Ge) as p ligands with different organometallic fragments at B3LYP and B3P86 level reveal a reverse charge transfer from ligand to metal in Si and Ge complexes whereas in C complexes there is a small charge transfer from metal to ligand. The H-bridged complexes are more stable than the complexes base… more
Date: May 2007
Creator: Yu, Liwen
Partner: UNT Libraries
open access

The evaluation, development, and application of the correlation consistent basis sets.

Description: Employing correlation consistent basis sets coupled with electronic structure methods has enabled accurate predictions of chemical properties for second- and third-row main group and transition metal molecular species. For third-row (Ga-Kr) molecules, the performance of the correlation consistent basis sets (cc-pVnZ, n=D, T, Q, 5) for computing energetic (e.g., atomization energies, ionization energies, electron and proton affinities) and structural properties using the ab initio coupled clust… more
Date: December 2006
Creator: Yockel, Scott
Partner: UNT Libraries
open access

From Development of Semi-empirical Atomistic Potentials to Applications of Correlation Consistent Basis Sets

Description: The development of the semi-empirical atomistic potential called the embedded atom method (EAM) has allowed for the efficient modeling of solid-state environments, at a lower computational cost than afforded by density functional theory (DFT). This offers the capability of EAM to model the energetics of solid-state phases of varying coordination, including defects, such as vacancies and self-interstitials. This dissertation highlights the development and application of two EAMs: a Ti potential … more
Date: May 2014
Creator: Gibson, Joshua S.
Partner: UNT Libraries
open access

The Impact of Computational Methods on Transition Metal-containing Species

Description: Quantum chemistry methodologies can be used to address a wide variety of chemical problems. Key to the success of quantum chemistry methodologies, however, is the selection of suitable methodologies for specific problems of interest, which often requires significant assessment. To gauge a number of methodologies, the utility of density functionals (BLYP, B97D, TPSS, M06L, PBE0, B3LYP, M06, and TPSSh) in predicting reaction energetics was examined for model studies of C-O bond activation of met… more
Date: December 2015
Creator: Wang, Jiaqi
Partner: UNT Libraries
open access

Kinetic Investigation of Atomic Hydrogen with Sulfur-Containing Species

Description: The reactions of atomic hydrogen with methanethiol and that of atomic hydrogen with carbon disulfide were studied experimentally using flash-photolysis resonance-fluorescence techniques. Rate constants were determined over a range of temperatures and pressures, and through analysis and comparison to theoretical work details of the reactions were ascertained.
Date: December 2014
Creator: Kerr, Katherine Elaine
Partner: UNT Libraries
open access

Kinetics and Mechanisms of Ligand Exchange Reactions of Chelate Complexes

Description: Certain ligand substitution reactions proceed to a complete displacement of the chelate ligand. Certain reactions proceed through a mechanism involving an initial fission of the tungsten-sulfur bond to afford a coordinatively-unsaturated intermediate which is rapidly attacked by chlorobenzene. The resulting solvated intermediate establishes an equilibrium which involves desolvation-solvation. Although main group organometallic chemistry has received a great deal of attention, this discussion wi… more
Date: May 1989
Creator: Cortés, José E. (José Enrique)
Partner: UNT Libraries
open access

Kinetics of Sulfur: Experimental Study of the Reaction of Atomic Sulfur with Acetylene and Theoretical Study of the Cn + So Potential Energy Surface

Description: The kinetics of the reaction of atomic sulfur with acetylene (S (3P) + C2H2) were investigated experimentally via the flash photolysis resonance fluorescence method, and the theoretical potential energy surface for the reaction CN + SO was modeled via the density functional and configuration interaction computational methods. Sulfur is of interest in modern chemistry due to its relevance in combustion and atmospheric chemistry, in the Claus process, in soot and diamond-film formation and in as… more
Date: May 2013
Creator: Ayling, Sean A.
Partner: UNT Libraries
open access

Knowledge Discovery of Nanotube Mechanical Properties With an Informatics-Molecular Dynamics Approach

Description: Carbon nanotubes (CNT) have unparalleled mechanical properties, spanning several orders of magnitude over both length and time scales. Computational and experimental results vary greatly, partly due to the multitude of variables. Coupling physics-based molecular dynamics (MD) with informatics methodologies is proposed to navigate the large problem space. The adaptive intermolecular reactive empirical bond order (AIREBO) is used to model short range, long range and torsional interactions. A … more
Date: May 2012
Creator: Borders, Tammie L.
Partner: UNT Libraries
open access

The One Electron Basis Set: Challenges in Wavefunction and Electron Density Calculations

Description: In the exploration of chemical systems through quantum mechanics, accurate treatment of the electron wavefunction, and the related electron density, is fundamental to extracting information concerning properties of a system. This work examines challenges in achieving accurate chemical information through manipulation of the one-electron basis set.
Date: May 2016
Creator: Mahler, Andrew
Partner: UNT Libraries
open access

Photophysics and Photochemistry of Copper(I) Phosphine and Collidine Complexes: An Experimental/Theoretical Investigation

Description: Copper(I) complexes have been studied through both experimental and computational means in the presented work. Overall, the work focuses on photophysical and photochemical properties of copper(I) complexes. Photophysical and photochemical properties are found to be dependent on the geometries of the copper(I) complexes. One of the geometric properties that are important for both photochemical and photophysical properties is coordination number. Coordination numbers have been observed to be … more
Date: August 2011
Creator: Determan, John J.
Partner: UNT Libraries
open access

Quantum Chemistry Calculations of Energetic and Spectroscopic Properties of p- and f-Block Molecules

Description: Quantum chemical methods have been used to model a variety of p- and f-block chemical species to gain insight about their energetic and spectroscopic properties. As well, the studies have provided understanding about the utility of the quantum mechanical approaches employed for the third-row and lanthanide species. The multireference ab initio correlation consistent Composite Approach (MR-ccCA) was utilized to predict dissociation energies for main group third-row molecular species, achieving… more
Date: August 2016
Creator: South, Christopher James
Partner: UNT Libraries
open access

Quantum Perspectives on Physical and Inorganic Chemistry

Description: Applications of computational quantum chemistry are presented, including an analysis of the photophysics of cyclic trinuclear coinage metal pyrazolates, an investigation into a potential catalytic cycle utilizing transition metal scorpionates to activate arene C-H bonds, and a presentation of the benchmarking of a new composite model chemistry (the correlation consistent composite approach, ccCA) for the prediction of classical barrier heights. Modeling the pyrazolate photophysics indicates a … more
Date: December 2007
Creator: Grimes-Marchan, Thomas V.
Partner: UNT Libraries
open access

Systematic Approaches to Predictive Computational Chemistry using the Correlation Consistent Basis Sets

Description: The development of the correlation consistent basis sets, cc-pVnZ (where n = D, T, Q, etc.) have allowed for the systematic elucidation of the intrinsic accuracy of ab initio quantum chemical methods. In density functional theory (DFT), where the cc-pVnZ basis sets are not necessarily optimal in their current form, the elucidation of the intrinsic accuracy of DFT methods cannot always be accomplished. This dissertation outlines investigations into the basis set requirements for DFT and how the … more
Date: May 2009
Creator: Prascher, Brian P.
Partner: UNT Libraries
open access

Theoretical Analysis of Drug Analogues and VOC Pollutants

Description: While computational chemistry methods have a wide range of applications within the set of traditional physical sciences, very little is being done in terms of expanding their usage into other areas of science where these methods can help clarify research questions. One such promising field is Forensic Science, where detailed, rapidly acquired sets of chemical data can help in decision-making at a crime scene. As part of an effort to create a database that fits these characteristics, the present… more
Date: August 2016
Creator: Garibay, Luis K.
Partner: UNT Libraries
open access

Thermochemistry Investigations Via the Correlation Consistent Composite Approach

Description: Since the development of the correlation consistent composite approach (ccCA) in 2006, ccCA has been shown to be applicable across the periodic table, producing, on average, energetic properties (e.g., ionization potentials, electron affinities, enthalpies of formation, bond dissociation energies) within 1 kcal/mol for main group compounds. This dissertation utilizes ccCA in the investigation of several chemical systems including nitrogen-containing compounds, sulfur-containing compounds, and c… more
Date: December 2012
Creator: Jorgensen, Kameron R.
Partner: UNT Libraries
open access

Transition Metal Catalyzed Oxidative Cleavage of C-O Bond

Description: The focus of this thesis is on C-O bonds activation by transition metal atoms. Lignin is a potential alternative energy resource, but currently is an underused biomass species because of its highly branched structure. To aid in better understanding this species, the oxidative cleavage of the Cβ-O bond in an archetypal arylglycerol β-aryl ether (β–O–4 Linkage) model compound of lignin with late 3d, 4d, and 5d metals was investigated. Methoxyethane was utilized as a model molecule to study the ac… more
Date: May 2015
Creator: Wang, Jiaqi
Partner: UNT Libraries
Back to Top of Screen