You limited your search to:

 Degree Discipline: Materials Science
 Collection: UNT Theses and Dissertations
Analysis of Thermoplastic Polyimide + Polymer Liquid Crystal Blends
Thermoplastic polyimides (TPIs) exhibit high glass transition temperatures (Tgs), which make them useful in high performance applications. Amorphous and semicrystalline TPIs show sub-Tg relaxations, which can aid in improving strength characteristics through energy absorption. The a relaxation of both types of TPIs indicates a cooperative nature. The semicrystalline TPI shows thermo-irreversible cold crystallization phenomenon. The polymer liquid crystal (PLC) used in the blends is thermotropic and with longitudinal molecular structure. The small heat capacity change (ACP) associated with the glass transition indicates the PLC to be rigid rod in nature. The PLC shows a small endotherm associated with the melting. The addition of PLC to the semicrystalline TPI does not significantly affect the Tg or the melting point (Tm). The cold crystallization temperature (Tc) increases with the addition of the PLC, indicating channeling phenomenon. The addition of PLC also causes a negative deviation of the ACP, which is another evidence for channeling. The TPI, PLC and their blends show high thermal stability. The semicrystalline TPI absorbs moisture; this effect decreases with the addition of the PLC. The absorbed moisture does not show any effect on the degradation. The addition of PLC beyond 30 wt.% does not result in an improvement of properties. The amorphous TPI + PLC blends also show the negative deviation of ACP from linearity with composition. The addition of PLC causes a decrease in the thermal conductivity in the transverse direction to the PLC orientation. The thermomechanical analysis indicates isotropic expansivity for the amorphous TPI and a small anisotropy for the semicrystalline TPI. The PLC shows large anisotropy in expansivity. Even 5 wt. % concentration of PLC in the blend induces considerable anisotropy in the expansivity. Thus, blends show controllable expansivity through PLC concentration. Amorphous TPI + PLC blends also show excellent film formability. The amorphous TPI blends show good potential for applications requiring high thermal stability, controlled expansivity and good film formability. digital.library.unt.edu/ark:/67531/metadc279285/
Application of thermomechanical characterization techniques to bismuth telluride based thermoelectric materials
Access: Use of this item is restricted to the UNT Community.
The thermoelectric properties of bismuth telluride based thermoelectric (TE) materials are well-characterized, but comparatively little has been published on the thermomechanical properties. In this paper, dynamic mechanical analysis (DMA) and differential scanning calorimetry data for bismuth telluride based TE materials is presented. The TE materials' tan delta values, indicative of viscoelastic energy dissipation modes, approached that of glassy or crystalline polymers, were greater than ten times the tan delta of structural metals, and reflected the anisotropic nature of TE materials. DMA thermal scans showed changes in mechanical properties versus temperature with clear hysteresis effects. These results showed that the application of DMA techniques are useful for evaluation of thermophysical and thermomechanical properties of these TE materials. digital.library.unt.edu/ark:/67531/metadc3166/
Characterization of cure kinetics and physical properties of a high performance, glass fiber-reinforced epoxy prepreg and a novel fluorine-modified, amine-cured commercial epoxy.
Kinetic equation parameters for the curing reaction of a commercial glass fiber reinforced high performance epoxy prepreg composed of the tetrafunctional epoxy tetraglycidyl 4,4-diaminodiphenyl methane (TGDDM), the tetrafunctional amine curing agent 4,4'-diaminodiphenylsulfone (DDS) and an ionic initiator/accelerator, are determined by various thermal analysis techniques and the results compared. The reaction is monitored by heat generated determined by differential scanning calorimetry (DSC) and by high speed DSC when the reaction rate is high. The changes in physical properties indicating increasing conversion are followed by shifts in glass transition temperature determined by DSC, temperature-modulated DSC (TMDSC), step scan DSC and high speed DSC, thermomechanical (TMA) and dynamic mechanical (DMA) analysis and thermally stimulated depolarization (TSD). Changes in viscosity, also indicative of degree of conversion, are monitored by DMA. Thermal stability as a function of degree of cure is monitored by thermogravimetric analysis (TGA). The parameters of the general kinetic equations, including activation energy and rate constant, are explained and used to compare results of various techniques. The utilities of the kinetic descriptions are demonstrated in the construction of a useful time-temperature-transformation (TTT) diagram and a continuous heating transformation (CHT) diagram for rapid determination of processing parameters in the processing of prepregs. Shrinkage due to both resin consolidation and fiber rearrangement is measured as the linear expansion of the piston on a quartz dilatometry cell using TMA. The shrinkage of prepregs was determined to depend on the curing temperature, pressure applied and the fiber orientation. Chemical modification of an epoxy was done by mixing a fluorinated aromatic amine (aniline) with a standard aliphatic amine as a curing agent for a commercial Diglycidylether of Bisphenol-A (DGEBA) epoxy. The resulting cured network was tested for wear resistance using tribological techniques. Of the six anilines, 3-fluoroaniline and 4-fluoroaniline were determined to have lower wear than the unmodified epoxy, while the others showed much higher wear rates. digital.library.unt.edu/ark:/67531/metadc4437/
Characterization of methyltrimethoxysilane sol-gel polymerization and the resulting aerogels.
Access: Use of this item is restricted to the UNT Community.
Methyl-functionalized porous silica is of considerable interest as a low dielectric constant film for semiconductor devices. The structural development of these materials appears to affect their gelation behaviors and impact their mechanical properties and shrinkage during processing. 29Si solution NMR was used to follow the structural evolution of MTMS (methyltrimethoxysilane) polymerization to gelation or precipitation, and thus to better understand the species that affect these properties and gelation behaviors. The effects of pH, water concentration, type of solvents, and synthesis procedures (single step acid catalysis and two-step acid/base catalysis) on MTMS polymerization were discussed. The reactivity of silicon species with different connectivity and the extent of cyclization were found to depend appreciably on the pH value of the sol. A kinetic model is presented to treat the reactivity of both silicon species involved in condensations separately based on the inductive and steric effects of these silicon species. Extensive cyclization in the presence of acid, which was attributed to the steric effects among numerous reaction pathways for the first time, prevents MTMS gelation, whereas gels were obtained from the two-step method with nearly random condensations. The experimental degree of condensation (DC) at the gel point using the two-step procedure was determined to be 0.86, which is considerably higher than that predicted by the current accepted theories. Both chemical and physical origins of this high value were suggested. Aerogels dried by supercritical CO2 extraction were characterized by FTIR, 13C and 29Si solid-state NMR and nitrogen sorption. The existence of three residual groups (Si-OH, Si-OCH3, and Si-OC2H5) was confirmed, but their concentrations are very low compared to silica aerogels. The low concentrations of the residual groups, along with the presence of Si-CH3, make MTMS aerogels permanently hydrophobic. To enhance applicability, MTMS aerogels were successfully prepared that demonstrated shrinkage less than 10% after supercritical drying; proving that the rigidity of the gel network is not the sole factor, suggesting in the literature, to cause the huge shrinkage in many hybrid aerogels reported. An important finding of this work is that MTMS aerogels can be prepared without tedious solvent exchange and surface modification if the molar ratio of water/MTMS increases to 8, substantially reducing the cost of aerogel production. This result was attributed to MTMS's fully condensation and low concentrations of ring species. digital.library.unt.edu/ark:/67531/metadc4266/
Characterizaton of Triethoxyfluorosilane and Tetraethoxysilane Based Aerogels
Access: Use of this item is restricted to the UNT Community.
Aerogels are highly porous, low dielectric constant (low k) materials being considered by the semiconductor industry as an interlayer dielectric. Low k materials are needed to overcome capacitance problems that limit device feature sizes. Precursors triethoxyfluorosilane (TEFS) and tetraethoxysilane (TEOS) were used to prepare bulk aerogels. Samples were prepared by sol-gel methods, and then carbon dioxide supercritically-dried. Effects of varying the water to precursor ratio were studied with respect to aerogel properties and microstructure. Methods of analysis for this study include FTIR-ATR, TEM, RBS, EDS, SEM, dielectric constant determination by impedance and surface area by gas adsorption. Si-F bonds were determined to be present in both acid- and base-catalyzed TEFS as well as HF-catalyzed TEOS. Fluorine promotes a fractal network microstructure as opposed to a particle-like microstructure. Surface area and dielectric constant were determined to increase slightly with increases in the water to precursor ratio. digital.library.unt.edu/ark:/67531/metadc2999/
Charge interaction effects in epoxy with cation exchanged montmorillonite clay and carbon nanotubes.
The influence of charge heterogeneity in nanoparticles such as montmorillonite layered silicates (MLS) and hybrid systems of MLS + carbon nanotubes was investigated in cured and uncured epoxy. Epoxy nanocomposites made with cation-exchanged montmorillonite clay were found to form agglomerates near a critical concentration. Using differential scanning calorimetry it was determined that the mixing temperature of the epoxy + MLS mixture prior to the addition of the curing agent critically influenced the formation of the agglomerate. Cured epoxy samples showed evidence of the agglomerate being residual charge driven by maxima and minima in the concentration profiles of thermal conductivity and dielectric permittivity respectively. A hybrid nanocomposite of MLS and aniline functionalized multi walled nanotubes indicated no agglomerates. The influence of environmentally and process driven properties on the nanocomposites was investigated by examination of moisture, ultrasound, microwaves and mechanical fatigue on the properties of the hybrid systems. The results point to the importance of charge screening by adsorbed or reacted water and on nanoparticulates. digital.library.unt.edu/ark:/67531/metadc4786/
Cure kinetics and processing parameters of neat and reinforced high performance epoxy resins : evaluation of techniques
Access: Use of this item is restricted to the UNT Community.
Kinetic equation parameters for the curing reaction of a commercial glass fiber reinforced high performance epoxy prepreg composed of the tetrafunctional epoxy tetraglycidyl 4,4-diaminodiphenyl methane (TGDDM), the tetrafunctional amine curing agent 4,4’-diaminodiphenylsulfone (DDS) and an ionic initiator/accelerator, are determined by various thermal analysis techniques and the results compared. The reaction is monitored by heat generated determined by differential scanning calorimetry (DSC). The changes in physical properties indicating increasing conversion are followed by shifts in glass transition temperature determined by DSC and temperature-modulated DSC (TMDSC), thermomechanical (TMA) and dynamic mechanical (DMA) analysis and thermally stimulated depolarization (TSD). Changes in viscosity, also indicative of degree of conversion, are monitored by DMA. Thermal stability as a function of degree of cure is monitored by thermogravimetric analysis (TGA). The parameters of the general kinetic equations, including activation energy and rate constant, are explained and used to compare results of various techniques. The utilities of the kinetic descriptions are demonstrated in the construction of a useful time-temperature-transformation (TTT) diagram for rapid determination of processing parameters in the processing of prepregs. Copyright is held by the author, unless otherwise noted. All rights reserved. Files: Thesis.pdf Special Conditions digital.library.unt.edu/ark:/67531/metadc2281/
Deposition and characterization of pentacene film.
Many organic materials have been studied to be used as semiconductors, few of them being pentacene and polythiophene. Organic semiconductors have been investigated to make organic thin film transistors. Pentacene has been used in the active region of the transistors. Transistors fabricated with pentacene do not have very high mobility. But in some applications, high mobility is not needed. In such application other properties of organic transistors are used, such as, ease of production and flexibility. Organic thin film transistors (OTFT) can find use as low density storage devices, such as smart cards or I.D. tags, and displays. OTFT are compatible with polymeric substrates and hence can find use as flexible computer screens. This project aims at making 'smart clothes', the cheap way, with pentacene based OTFT. This problem in lieu of thesis describes a way to deposit pentacene films and characterize it. Pentacene films were deposited on substrates and characterized using x-ray diffraction (XRD) and Fourier transform infrared spectroscopy (FTIR). The substrate used was ~1500Å platinum on silicon wafer or bare silicon wafer. was used. A deposition system for vacuum deposition of pentacene was assembled. The XRD data for deposited pentacene films shows the presence of two phases, single crystal phase (SCP) and thin film phase (TFP), and the increase in percentage of SCP with increase in substrate temperature during deposition or by annealing the deposited film, in vacuum, at 80°C. digital.library.unt.edu/ark:/67531/metadc4388/
The effects of color concentrate in polyolefins.
Access: Use of this item is restricted to the UNT Community.
Throughout history consumer products were generally manufactured from wood and metal. They either had to hold their natural color or become subject to painting. When plastics entered the industry, it was recognized for its ease of shaping, re-usability, physical properties and its low cost. One of plastics' greatest benefits is its ability to hold a given color from within allowing it to avoid use of paint. This paper will give a brief overview on the effects of pigments when incorporated in a polyolefin. It will provide a classification of the main types of pigments and how each effect the properties of the product through: crystallization, weatherability, opacity, coloristic values and of course viscosity. digital.library.unt.edu/ark:/67531/metadc3016/
The Electron Emission Characteristics of Aluminum, Molybdenum and Carbon Nanotubes Studied by Field Emission and Photoemission.
The electron emission characteristics of aluminum, molybdenum and carbon nanotubes were studied. The experiments were setup to study the emission behavior as a function of temperature and exposure to oxygen. Changes in the surface work function as a result of thermal annealing were monitored with low energy ultra-violet photoelectron spectroscopy for flat samples while field emission energy distributions were used on tip samples. The change in the field emission from fabricated single tips exposed to oxygen while in operation was measured using simultaneous Fowler-Nordheim plots and electron energy distributions. From the results a mechanism for the degradation in the emission was concluded. Thermal experiments on molybdenum and aluminum showed that these two materials can be reduced at elevated temperatures, while carbon nanotubes on the other hand show effects of oxidation. To purely reduce molybdenum a temperature in excess of 750 ºC is required. This temperature exceeds that allowed by current display device technology. Aluminum on the other hand shows reduction at a much lower temperature of at least 125 ºC; however, its extreme reactivity towards oxygen containing species produces re-oxidation. It is believed that this reduction is due to the outward diffusion of aluminum atoms through the oxide. Carbon nanotubes on the other hand show signs of oxidation as they are heated above 700 ºC. In this case the elevated temperatures cause the opening of the end caps allowing the uptake of water. Oxygen exposure experiments indicate that degradation in field emission is two-fold and is ultimately dependent on the emission current at which the tip is operated. At low emission currents the degradation is exclusively due to oxidation. At high emission currents ion bombardment results in the degradation of the emitter. In between the two extremes, molybdenum tips are capable of stable emission. digital.library.unt.edu/ark:/67531/metadc3311/
Epoxy + liquid crystalline epoxy coreacted networks
Molecular reinforcement through in-situ polymerization of liquid crystalline epoxies (LCEs) and a non-liquid crystalline epoxy has been investigated. Three LCEs: diglycidyl ether of 4,4'-dihydroxybiphenol (DGE-DHBP) and digylcidyl ether of 4-hydroxyphenyl-4"-hydroxybiphenyl-4'-carboxylate (DGE-HHC), were synthesized and blended with diglycidyl ether of bisphenol F (DGEBP-F) and subsequently cured with anhydride and amine curing agents. Curing kinetics were determined using differential scanning calorimetry (DSC). Parameters for autocatalytic curing kinetics of both pure monomers and blended systems were determined. The extent of cure for both monomers was monitored by using Fourier transform infrared spectroscopy (FT-IR). The glass transitions were evaluated as a function of composition using DSC and dynamic mechanical analysis (DMA). The results show that the LC constituent affects the curing kinetics of the epoxy resin and that the systems are highly miscible. The effects of molecular reinforcement of DGEBP-F by DGE-DHBP and DGE-HHC were investigated. The concentration of the liquid crystalline moiety affects mechanical properties. Tensile, impact and fracture toughness tests results are evaluated. Scanning electron microscopy of the fracture surfaces shows changes in failure mechanisms compared to the pure components. Results indicate that mechanical properties of the blended samples are improved already at low concentration by weight of the LCE added into epoxy resin. The improvement in mechanical properties was found to occur irrespective of the absence of liquid crystallinity in the blended networks. The mechanism of crack study indicates that crack deflection and crack bridging are the mechanisms in case of LC epoxy. In case of LC modified epoxy, the crack deflection is the main mechanism. Moreover, the effect of coreacting an epoxy with a reactive monomer liquid crystalline epoxy as a matrix for glass fiber composites was investigated. Mechanical properties of the modified matrix were determined by tensile, flexural and impact testing. The improvement in toughness of the bulk matrix by the addition of a LCEs is seen also in the composites. The improvement is related to the enhancement of adhesion between the glass fibers and the matrix. digital.library.unt.edu/ark:/67531/metadc2705/
Fabrication of MOS capacitor and transitor structure using contact photolithography.
Access: Use of this item is restricted to the UNT Community.
This problem in lieu of thesis report describes a practical photolithographic method to produce micro patterns on metal-oxide-semiconductor or metal-oxide-semiconductor-metal layers for electrical measurements. The desired patterns are then transferred from the photo mask to the photoresist-coated metal film by exposure, followed by wet etching. In the procedure described in this report, it was observed that microstructures as small as 27 mm with an edge roughness of ~ 2 mm can be reproducibly generated with this process. MOS capacitors and transistors structures can be fabricated by using this technique. The method described in this report requires access to only simple facilities so that it is relatively inexpensive, and the overall time required for the whole process is short. digital.library.unt.edu/ark:/67531/metadc3172/
Hypotheses for Scratch Behavior of Polymer Systems that Recover
Scratch recovery is a desirable property of many polymer systems. The reason why some materials have demonstrated excellent scratch recovery while others do not has been a mystery. Explaining the scratch resistance based upon the hardness of a material or its crosslink density is incorrect. In this thesis, novel polymers were tested in an attempt to discover materials that show excellent scratch recovery - one of the most important parameters in determining the wear of a material. Several hypotheses were developed in an attempt to give an accurate picture of how the chemical structure of a polymer affects its scratch recovery. The results show that high scratch recovery is a complex phenomenon not solely dependent upon the presence of electronegative atoms such as fluorine. digital.library.unt.edu/ark:/67531/metadc3153/
Influence of design and coatings on the mechanical reliability of semiconductor wafers.
We investigate some of the mechanical design factors of wafers and the effect on strength. Thin, solid, pre-stressed films are proposed as a means to improve the bulk mechanical properties of a wafer. Three-point bending was used to evaluate the laser scribe density and chemical processing effect on wafer strength. Drop and strike tests were employed to investigate the edge bevel profile effect on the mechanical properties of the wafer. To characterize the effect of thin films on strength, one-micron ceramic films were deposited on wafers using PECVD. Coated samples were prepared by cleaving and were tested using four-point bending. Film adhesion was characterized by notched four-point bending. RBS and FTIR were used to obtain film chemistry, and nanoindentation was used to investigate thin film mechanical properties. A stress measurement gauge characterized residual film stress. Mechanical properties of the wafers correlated to the residual stress in the film. digital.library.unt.edu/ark:/67531/metadc3190/
Investigation of growth kinetics of self-assembling monolayers by means of contact angle, optical ellipsometry, angle-resolved XPS and IR spectroscopy.
Absorption of octadecanethiol and p-nitrobenzenethiol onto gold surfaces from ethanol solutions has been studied by means of contact angle, optical ellipsometry, angle-resolved XPS (ARXPS), and with grazing angle total reflection FTIR. Growth of the monolayers from dilute solutions has been monitored and Langmuir isotherm adsorption curves were fitted to experimental data. A saturated film is formed within approximately 5h after immersion in solutions of concentrations ranging from 0.0005mM to 0.01mM. We found, that the final density of monolayer depends on the concentration of the solution. digital.library.unt.edu/ark:/67531/metadc4602/
Materials properties of hafnium and zirconium silicates: Metal interdiffusion and dopant penetration studies.
Hafnium and Zirconium based gate dielectrics are considered potential candidates to replace SiO2 or SiON as the gate dielectric in CMOS processing. Furthermore, the addition of nitrogen into this pseudo-binary alloy has been shown to improve their thermal stability, electrical properties, and reduce dopant penetration. Because CMOS processing requires high temperature anneals (up to 1050 °C), it is important to understand the diffusion properties of any metal associated with the gate dielectric in silicon at these temperatures. In addition, dopant penetration from the doped polysilicon gate into the Si channel at these temperatures must also be studied. Impurity outdiffusion (Hf, Zr) from the dielectric, or dopant (B, As, P) penetration through the dielectric into the channel region would likely result in deleterious effects upon the carrier mobility. In this dissertation extensive thermal stability studies of alternate gate dielectric candidates ZrSixOy and HfSixOy are presented. Dopant penetration studies from doped-polysilicon through HfSixOy and HfSixOyNz are also presented. Rutherford backscattering spectroscopy (RBS), heavy ion RBS (HI-RBS), x-ray photoelectron spectroscopy (XPS), high resolution transmission electron microscopy (HR-TEM), and time of flight and dynamic secondary ion mass spectroscopy (ToF-SIMS, D-SIMS) methods were used to characterize these materials. The dopant diffusivity is calculated by modeling of the dopant profiles in the Si substrate. In this disseration is reported that Hf silicate films are more stable than Zr silicate films, from the metal interdiffusion point of view. On the other hand, dopant (B, As, and P) penetration is observed for HfSixOy films. However, the addition of nitrogen to the Hf - Si - O systems improves the dopant penetration properties of the resulting HfSixOyNz films. digital.library.unt.edu/ark:/67531/metadc3221/
Mechanical Properties of Polymer Modified Mortar
Access: Use of this item is restricted to the UNT Community.
The mechanical properties of the polymer-modified mortar are markedly improved over conventional cement mortar. We utilized recycled ABS in powder form and a polymer latex emulsion, polymer percentage ranges from 0 to 25 percent by polymer/cement ratio were investigated. The mechanical properties investigated were compression strength and adhesion strength. Compression strength effects did not have an impact on adhesion strength. Adhesion strength was calculated with pullout testing apparatus designed by the author. Results indicate that recycled ABS had a lower adhesive strength than the acrylic latex emulsion and the base mortar, but did increase in adhesive strength when mixed with maleic-anhydride. The adhesive strength was investigated for a Fiber Reinforced Polymer (FRP) made of an "E" glass fiber that is a continuous strand roving oriented and pre-tensioned longitudinally in an isopthalic polyester matrix material. The FRP rebar was compared to standard steel rebars, and found that the standard steel corrugated rebar had a higher adhesive strength, due to mechanical interlocking. This was clarified by measurements using a smooth steel rebar. Characterization of the polymer-modified mortar was conducted by pore analysis and scanning electron microscopy. Scanning Electron Microscopy was implemented to view the polymer particles, the cement fibrils formed by the hydration, and to prove Ohama's theory of network structure. digital.library.unt.edu/ark:/67531/metadc3173/
Mineral-filled polypropylene: Improvement of scratch resistance
Access: Use of this item is restricted to the UNT Community.
A potential alternative to acrylonitrile-butadiene-styrene (ABS) and polycarbonate+ABS (PC+ABS), pigmented mineral-filled polypropylene (PP) finds an opening in automotive interior components such as instrument panels, knee bolsters, consoles, etc. Because of the lack of surface aesthetics, pigmented mineral-filled PP is experiencing a limitation to its acceptance in many applications. This study focuses on exploring various mineral fillers and additives in polypropylene to provide a material with enhanced scratch resistance. Several physical properties including Rockwell and Shore D hardness are investigated, and it is determined that Filler W improves scratch resistance. It is also determined that Filler T-filled-PP has poor scratch resistance even with the addition of a lubricant. digital.library.unt.edu/ark:/67531/metadc3009/
Modifications of epoxy resins for improved mechanical and tribological performances and their effects on curing kinetics.
A commercial epoxy, diglycidyl ether of bisphenol-A, was modified by two different routes. One was the addition of silica to produce epoxy composites. Three different silane coupling agents, glycidyloxypropyl trimethoxy silane (GPS), -methacryloxypropyl trimethoxy silane (MAMS) and 3-mercaptopropyltriethoxy silane (MPS), were used as silica-surface modifiers. The effects of silica content, together with the effects of chemical surface treatment of silica, were studied. The results indicate that epoxy composites with silica exhibit mechanical and tribological properties as well as curing kinetics different than the pure epoxy. The optimum silica content for improved mechanical and tribological properties (low friction coefficient and wear rate) was different for each type of silane coupling agent. An unequivocal correlation between good mechanical and improved tribological properties was not found. Activation energy of overall reactions was affected by the addition of silica modified with MAMS and MPS, but not with GPS. The second route was modification by fluorination. A new fluoro-epoxy oligomer was synthesized and incorporated into a commercial epoxy by a conventional blending method. The oligomer functioned as a catalyst in the curing of epoxy and polyamine. Thermal stability of the blends decreased slightly at a high oligomer content. Higher wear resistance, lower friction coefficient and higher toughness were found with increasing oligomer content; thus in this case there was a correlation between good mechanical and improved tribological properties. The results indicated that increasing toughness and formation of a transfer film contribute to improved tribological performances. digital.library.unt.edu/ark:/67531/metadc6123/
Polyamide-imide and Montmorillonite Nanocomposites
Solvent suspensions of a high performance polymer, Polyamide-imide (PAI) are widely used in magnetic wire coatings. Here we investigate the effect that the introduction of montmorillonite (MMT) has on PAI. MMT was introduced into an uncured PAI suspension; the sample was then cured by step-wise heat treatment. Polarized optical microscopy was used to choose the best suitable MMT for PAI matrix and to study the distribution of MMT in PAI matrix. Concentration dependent dispersion effect was studied by x-ray diffraction (XRD) and was confirmed by Transmission electron microscopy (TEM). Differential scanning Calorimetry (DSC) and Thermogravimetric analysis (TGA) was used to study impact of MMT on glass transition temperature (Tg) and degradation properties of PAI respectively. Micro-hardness testing of PAI nanocomposites was also performed. A concentration dependent state of dispersion was obtained. The glass transition (Tg), degradation and mechanical properties were found to correlate to the state of dispersion. digital.library.unt.edu/ark:/67531/metadc2873/
Polymer hydrogel nanoparticles and their networks
The thermally responsive hydroxypropyl cellulose (HPC) hydrogel nanoparticles have been synthesized and characterized. The HPC particles were obtained by chemically crosslinking collapsed HPC polymer chains in water-surfactant (dodecyltrimethylammonium bromide) dispersion above the lower critical solution temperature (LCST) of the HPC. The size distributions of microgel particles, measured by dynamic light scattering, have been correlated with synthesis conditions including surfactant concentration, polymer concentration, and reaction temperature. The swelling and phase transition properties of resultant HPC microgels have been analyzed using both static and dynamic light scattering techniques. By first making gel nanoparticles and then covalently bonding them together, we have engineered a new class of gels with two levels of structural hierarchy: the primary network is crosslinked polymer chains in each individual particle, while the secondary network is a system of crosslinked nanoparticles. The covalent bonding contributes to the structural stability of the nanostructured gels, while self-assembly provides them with crystal structures that diffract light, resulting in colors. By using N-isopropylacrylamide copolymer hydrogel nanoparticles, we have synthesized nanoparticle networks that display a striking iridescence like precious opal but are soft and flexible like gelatin. This is in contrast to previous colored hydrogels, which were created either by adding dyes or fluorescent, or by organic solvent or by embedding a colloidal crystal array of polymer solid spheres . Creating such periodic 3D structures in materials allows us to obtain useful functionality not only from the constituent building blocks but also from the long-range ordering that characterizes these structures. Hydroxypropyl cellulose (HPC) and poly (acrylic acid ) (PAA) complexes were studied using turbidity measurement and laser light scattering. The phase transition temperature of the complexes is found to depend on pH and molecular weights of PAA and HPC. The driving force for this phenomenon is due to the hydrogen bonding and hydrophobic interaction of the macromolecules. Based on the principle of the PAA/HPC complexes, the PAA nanoparticles were synthesized in 0.1wt % HPC aqueous solution at room temperature. digital.library.unt.edu/ark:/67531/metadc3232/
Polymer Liquid Crystal (PLC) and Polypropylene Interlayers in Polypropylene and Glass Fiber Composites: Mechanical Properties
In recent developments of composite materials, scientists and engineers have come up with fibers as well as matrices for composites and techniques of blending high cost components with low cost materials. Thus, one creates cost effective composite materials that are as efficient as space age components. One of the major breakthroughs in this area is the innovation of molecular composites, specifically polymeric liquid crystals (PLCs). These materials have excellent mechanical properties such as tensile impact and bending strength. They have excellent chemical resistance, low thermal expansivity, and low flammability. Their low viscosity leads to good processability One major setback in using space age composite technology in commercial applications is the price. Due to the complexity of processing, the cost of space composite materials is skyrocketing. To take the same concept of space age composite materials to create a more economical substitute has become a serious concern among scientists and engineers around the world. The two issues that will be resolved in this thesis are: (1) the potential impact of using PLCs (molecular reinforcement) can have on macro reinforced (heterogeneous composite, HC) long fiber systems; and (2) how strategic placement of the reinforcing layers can affect the macromechanical properties of the laminates. digital.library.unt.edu/ark:/67531/metadc5838/
Preparation and Characterization of a Treated Montmorillonite Clay and Epoxy Nanocomposite
Montmorillonite reinforced polymers are a new development in the area of nanocomposite materials. Since reinforcement of epoxy is important to the development of high strength adhesives and composite matrices, the introduction of montmorillonite to epoxy is of interest. Compositional effects on epoxy reactivity, on molecular relaxation, and on mechanical properties were investigated. Change in reactivity was determined by Differential Scanning Calorimetry. Tensile properties at room temperature indicated improved modulus and retention of strength of the epoxy matrix but a decreased elongation to failure. Depression of dry nanocomposite glass transition was observed for nanocomposites beyond 5% by weight montmorillonite. Samples that were saturated with water showed lower moduli due to the epoxy matrix. The greatest moisture absorption rate was found at 7%, the least at 3%. digital.library.unt.edu/ark:/67531/metadc2729/
Stability of Field Emitter Arrays to Oxygen Exposures
The purpose of these experiments was to determine the degradation mechanisms of molybdenum based field emitter arrays to oxygen exposures and to improve the overall reliability. In addition, we also evaluated the emission current stability of gold-coated field emitter arrays to oxygen exposures. oxygen at 1x10-6 torr was introduced into the chamber through a leak valve for different lengths of time and duty cycles. To ensure identical oxygen exposure and experimental measurement conditions, tips on half the area of the FEA were fully coated with gold and the other half were left uncoated. The emission current from the gold coated half was found to degrade much less than that from the uncoated half, in the presence of oxygen. Also in the absence of oxygen, the emission current recovery for the gold-coated side was much quicker than that for the uncoated side. digital.library.unt.edu/ark:/67531/metadc3346/
Structure property and deformation analysis of polypropylene montmorillonite nanocomposites.
Nanocomposites with expandable smectites such as montmorillonite layered silicates (MLS) in polymer matrices have attracted extensive application interest. Numerous MLS concentrations have been used with no particular justification. Here, we investigate the effects of MLS dispersion within the matrix and on mechanical performance. The latter is resolved through a three-prong investigation on rate dependent tensile results, time dependent creep results and the influence of a sharp notch in polypropylene (PP) nanocomposites. A fixed concentration of maleated polypropylene (mPP) was utilized as a compatibilizer between the MLS and non-polar PP. Analysis of transmission electron micrographs and X-ray diffraction patterns on the surface and below the surface of our samples revealed a unique skin-core effect induced by the presence of clay. Differential scanning calorimetric and polarized optical microscopic examination of spherulites sizes showed changes in nucleation and growth resulting from both the maleated PP compatibilizer and the MLS. These structural changes resulted in a tough nanocomposite, a concept not reported before in the PP literature. Nonlinear creep analysis of the materials showed two concentrations 3 and 5 % wt of PP, which reduced the compliance in the base PP. The use of thermal wave imaging allowed the identification of ductile failure among materials, but more important, aided the mapping of the elastic and plastic contributions. These are essential concepts in fracture analysis. digital.library.unt.edu/ark:/67531/metadc4213/
Techniques Utilized in the Characterization of Existing Materials for Improved Material Development
It has become increasingly important to remain on the cutting edge of technology for a company to remain competitive and survive in today's high-tech industries. To do this, a company needs various resources dedicated to this cause. One of these resources is the use of existing materials, as starting points, for which improved materials can be based. For this, a company must rely on the characterization of existing materials to bring that base technology into their company. Through this evaluation, the base materials properties can be obtained and a material with improved properties can be developed. There are many techniques that can be used in characterizing an existing material, but not every technique is required to obtain the desired goal. The techniques utilized depend upon the depth of identification required. This report summarizes several techniques utilized in the characterization of existing materials and provides some examples of evaluated products. digital.library.unt.edu/ark:/67531/metadc3021/
Temperature dependent rheology of surfactant-hydroxypropyl cellulose solutions.
The rheology of 1-8% hydroxypropyl cellulose (HPC) solutions has been studied in the temperature range of 20-45 degrees Celsius. The results showed that the relative viscosity at each HPC concentration decreases with increasing temperature. The relative viscosity decreases drastically at about 43 degrees Celsius due to a phase transition. The influence of anionic surfactant, sodium dodecylsulfate (SDS), induced gelation of a 2% HPC solution. The HPC solutions gelled at surfactant SDS concentrations ranging from 0.4 to 1.0 critical micelle concentration (CMC). The gelation of the HPC/SDS hydrogel is explained in the surfactant SDD - bridged HPC linear polymer chains. The complex viscosity - concentration profile was determined below the CMC of the SDS - water pair. The peak itself was a function of frequency indicating the presence of two relaxation times within the gelled network. digital.library.unt.edu/ark:/67531/metadc3312/
Thermal, Electrical, and Structural Analysis of Graphite Foam
Access: Use of this item is restricted to the UNT Community.
A graphite foam was developed at Oak Ridge National Laboratory (ORNL) by Dr. James Klett and license was granted to POCO Graphite, Inc. to manufacture and market the product as PocoFoam™. Unlike many processes currently used to manufacture carbon foams, this process yields a highly graphitic structure and overcomes many limitations, such as oxidation stabilization, that are routinely encountered in the development of carbon foam materials. The structure, thermal properties, electrical resistivity, isotropy, and density uniformity of PocoFoam™ were evaluated. These properties and characteristics of PocoFoam™ are compared with natural and synthetic graphite in order to show that, albeit similar, it is unique. Thermal diffusivity and thermal conductivity were derived from Fourier's energy equation. It was determined that PocoFoam™ has the equivalent thermal conductivity of metals routinely used as heat sinks and that thermal diffusivity is as much as four times greater than pure copper and pure aluminum. SEM and XRD results indicate that PocoFoam™ has a high degree of crystalline alignment and near theoretical d spacing that is more typical of natural flake graphite than synthetic graphite. PocoFoam™ is anisotropic, indicating an isotropy factor of 0.5, and may yield higher thermal conductivity at cryogenic temperatures than is observed in polycrystalline graphite. digital.library.unt.edu/ark:/67531/metadc2836/