You limited your search to:

  Access Rights: Use restricted to UNT Community
 Department: Department of Engineering Technology
 Degree Discipline: Engineering Systems
 Collection: UNT Theses and Dissertations
Electrical resistivity as a measure of change of state in substrates: Design, development and validation of a microprocessor-based system.

Electrical resistivity as a measure of change of state in substrates: Design, development and validation of a microprocessor-based system.

Access: Use of this item is restricted to the UNT Community.
Date: December 2009
Creator: Le, Dong D.
Description: Smart structures are relevant and significant because of their relevance to phenomena such as hazard mitigation, structural health monitoring and energy saving. Electrical resistance could potentially serve as an indicator of structural well-being or damage in the structure. To this end, the development of a microprocessor-based automated resistance measurement system with customized GUI is desired. In this research, a nodal electrical resistance acquisition circuit (NERAC) system was designed. The system hardware interfaces to a laptop, which houses a customized GUI developed using DAQFactory software. Resistance/impedance was measured using DC/AC methods with four-point probes technique, on three substrates. Baseline reading before damage was noted and compared with the resistance measured after damage. The device was calibrated and validated on three different substrates. Resistance measurements were taken from PVDF samples, composite panels and smart concrete. Results conformed to previous work done on these substrates, validating the effective working of the NERAC device.
Contributing Partner: UNT Libraries