You limited your search to:

 Department: Department of Materials Science and Engineering
 Degree Level: Master's
 Collection: UNT Theses and Dissertations
Study of Conductance Quantization by Cross-Wire Junction

Study of Conductance Quantization by Cross-Wire Junction

Access: Use of this item is restricted to the UNT Community.
Date: May 2004
Creator: Zheng, Tao
Description: The thesis studied quantized conductance in nanocontacts formed between two thin gold wires with one of the wires coated by alkainthiol self assembly monolayers (SAM), by using the cross-wire junction. Using the Lorenz force as the driving force, we can bring the two wires in contact in a controlled manner. We observed conductance with steps of 2e2 / h. The conductance plateaus last several seconds. The stability of the junction is attributed to the fact that the coating of SAM improves the stability and capability of the formed contact.
Contributing Partner: UNT Libraries
Study of lead sorption on magnetite at high temperatures.

Study of lead sorption on magnetite at high temperatures.

Date: December 2006
Creator: Paliwal, Vaishali
Description: Lead's uptake on magnetite has been quantitatively evaluated in the present study at a temperature of 200°C and pH of 8.5 with lead concentrations ranging from 5 ppm to175 ppm by equilibrium adsorption isotherms. The pH independent sorption behavior suggested lead sorption due to pH independent permanent charge through weak electrostatic, non-specific attraction where cations are sorbed on the cation exchange sites. The permanent negative charge could be a consequence of lead substitution which is supported by increase in the lattice parameter values from the X-ray diffraction (XRD) results. Differential scanning calorimetry (DSC/TGA) results showed an increase of exothermic (magnetite to maghemite transformation) peak indicating substitution of lead ions due to which there is retardation in the phase transformation. Presence of outer sphere complexes and physical sorption is further supported by Fourier transformed infrared spectroscopy (FTIR). None of the results suggested chemisorption of lead on magnetite.
Contributing Partner: UNT Libraries
A Study of Mechanisms to Engineer Fine Scale Alpha Phase Precipitation in Beta Titanium Alloy, Beta 21S

A Study of Mechanisms to Engineer Fine Scale Alpha Phase Precipitation in Beta Titanium Alloy, Beta 21S

Date: August 2013
Creator: Behera, Amit Kishan
Description: Metastable b-Ti alloys are titanium alloys with sufficient b stabilizer alloying additions such that it's possible to retain single b phase at room temperature. These alloys are of great advantage compared to a/b alloys since they are easily cold rolled, strip produced and can attain excellent mechanical properties upon age hardening. Beta 21S, a relatively new b titanium alloy in addition to these general advantages is known to possess excellent oxidation and corrosion resistance at elevated temperatures. A homogeneous distribution of fine sized a precipitates in the parent b matrix is known to provide good combination of strength, ductility and fracture toughness. The current work focuses on a study of different mechanisms to engineer homogeneously distributed fine sized a precipitates in the b matrix. The precipitation of metastable phases upon low temperature aging and their influence on a precipitation is studied in detail. The precipitation sequence on direct aging above the w solvus temperature is also assessed. The structural and compositional evolution of precipitate phase is determined using multiple characterization tools. The possibility of occurrence of other non-classical precipitation mechanisms that do not require heterogeneous nucleation sites are also analyzed. Lastly, the influence of interstitial element, oxygen on a precipitation ...
Contributing Partner: UNT Libraries
Supercritical CO2 foamed biodegradable polymer blends of polycaprolactone and Mater-Bi.

Supercritical CO2 foamed biodegradable polymer blends of polycaprolactone and Mater-Bi.

Date: December 2007
Creator: Ogunsona, Emmanuel Olusegun
Description: Supercritical CO2 foam processing of biopolymers represents a green processing route to environmentally friendly media and packaging foams. Mater-Bi, a multiconstituent biopolymer of polyester, starch and vegetable oils has shown much promise for biodegradation. The polymer, however, is not foamable with CO2 so blended with another polymer which is. Polycaprolactone is a biopolymer with potential of 4000% change in volume with CO2. Thus we investigate blends of Mater-Bi (MB) and polycaprolactone (PCL) foamed in supercritical CO2 using the batch process. Characterization of the foamed and unfoamed samples were done using X-ray diffraction (XRD), differential scanning calorimetry (DSC) and scanning electron microscopy (SEM). Micrographs of the samples from the SEM revealed that the cell size of the foams reduced and increased with increase in MB concentration and increase in the foaming temperature respectively. Mechanical tests; tensile, compression, shear and impact were performed on the foamed samples. It was noted that between the 20-25% wt. MB, there was an improvement in the mechanical properties. This suggests that at these compositions, there is a high interaction between PCL and MB at the molecular level compared to other compositions. The results indicate that green processing of polymer blends is viable.
Contributing Partner: UNT Libraries
Supercritical Silylation and Stability of Silyl Groups

Supercritical Silylation and Stability of Silyl Groups

Access: Use of this item is restricted to the UNT Community.
Date: May 2006
Creator: Nerusu, Pawan Kumar
Description: Methylsilsesquioxane (MSQ) and organosilicate glass (OSG) are the materials under this study because they exhibit the dielectric constant values necessary for future IC technology requirements. Obtaining a low-k dielectric value is critical for the IC industry in order to cope time delay and cross talking issues. These materials exhibit attractive dielectric value, but there are problems replacing conventional SiO2, because of their chemical, mechanical and electrical instability after plasma processing. Several techniques have been suggested to mitigate process damage but supercritical silylation offers a rapid single repair step solution to this problem. Different ash and etch damaged samples were employed in this study to optimize an effective method to repair the low-k dielectric material and seal the surface pores via supercritical fluid processing with various trialkylchlorosilanes. Fourier transform infrared spectroscopy (FTIR), contact angle, capacitance- voltage measurements, and x-ray photoemission spectroscopy, dynamic secondary ion mass spectroscopy (DSIMS), characterized the films. The hydrophobicity and dielectric constant after exposure to elevated temperatures and ambient conditions were monitored and shown to be stable. The samples were treated with a series of silylating agents of the form R3-Si-Cl where R is an alkyl groups (e.g. ethyl, propyl, isopropyl). Reactivity with the surface hydroxyls was inversely ...
Contributing Partner: UNT Libraries
Surface Engineering and Characterization of Laser Deposited Metallic Biomaterials

Surface Engineering and Characterization of Laser Deposited Metallic Biomaterials

Date: May 2007
Creator: Samuel, Sonia
Description: Novel net shaping technique Laser Engineered Net shaping™ (LENS) laser based manufacturing solution (Sandia Corp., Albuquerque, NM); Laser can be used to deposit orthopedic implant alloys. Ti-35Nb-7Zr-5Ta (TNZT) alloy system was deposited using LENS. The corrosion resistance being an important prerequisite was tested electrochemically and was found that the LENS deposited TNZT was better than conventionally used Ti-6Al-4V in 0.1N HCl and a simulated body solution. A detailed analysis of the corrosion product exhibited the presence of complex oxides which are responsible for the excellent corrosion resistance. In addition, the in vitro tests done on LENS deposited TNZT showed that they have excellent biocompatibility. In order to improve the wear resistance of the TNZT system boride reinforcements were carried out in the matrix using LENS processing. The tribological response of the metal matrix composites was studied under different conditions and compared with Ti-6Al-4V. Usage of Si3N4 balls as a counterpart in the wear studies showed that there is boride pullout resulting in third body abrasive wear with higher coefficient of friction (COF). Using 440C stainless steel balls drastically improved the COF of as deposited TNZT+2B and seemed to eliminate the effect of “three body abrasive wear,” and also exhibited superior ...
Contributing Partner: UNT Libraries
Topics in micro electromechanical systems: MEMS engineering and alternative materials for MEMS fabrication.

Topics in micro electromechanical systems: MEMS engineering and alternative materials for MEMS fabrication.

Access: Use of this item is restricted to the UNT Community.
Date: August 2004
Creator: Chapla, Kevin
Description: This paper deals with various topics in micro electromechanical systems (MEMS) technology beginning with microactuation, MEMS processing, and MEMS design engineering. The fabrication and testing of three separate MEMS devices are described. The first two devices are a linear stepping motor and a continuous rotary motor, respectively; and were designed for the purpose of investigating the frictional and wear properties of silicon components. The third device is a bi-stable microrelay, in which electrical current conducts through a secondary circuit, via a novel probe-interconnect mechanism. The second half focuses on engineering a carbon nanotube / SU-8 photoepoxy nanocomposite for fabricating MEMS devices. A processing method for this material as well as the initial results of characterization, are discussed.
Contributing Partner: UNT Libraries
Void Growth and Collapse in a Creeping Single Crystal

Void Growth and Collapse in a Creeping Single Crystal

Date: August 2011
Creator: Srivastava, Ankit
Description: Aircraft engine components can be subjected to a large number of thermo-mechanical loading cycles and to long dwell times at high temperatures. In particular, the understanding of creep in single crystal superalloy turbine blades is of importance for designing more reliable and fuel efficient aircraft engines. Creep tests on single crystal superalloy specimens have shown greater creep strain rates for thinner specimens than predicted by current theories. Therefore, it is necessary to develop a more predictive description of creep processes in these materials for them to be used effectively. Experimental observations have shown that the crystals have an initial porosity and that the progressive growth of these voids plays a major role in limiting creep life. In order to understand void growth under creep in single crystals, we have analyzed the creep response of three dimensional unit cells with a single spherical void under different types of isothermal creep loading. The growth behavior of the void is simulated using a three dimensional rate dependent crystal plasticity constitutive relation in a quasi-static finite element analysis. The aim of the present work is to analyze the effect of stress traixiality and Lode parameter on void growth under both constant true stress and ...
Contributing Partner: UNT Libraries
A Wet Etch Release Method for Silicon Microelectromechanical Systems (MEMS) Using Polystyrene Microspheres for Improved Yield

A Wet Etch Release Method for Silicon Microelectromechanical Systems (MEMS) Using Polystyrene Microspheres for Improved Yield

Access: Use of this item is restricted to the UNT Community.
Date: May 2004
Creator: Mantiziba, Fadziso
Description: One of the final steps in fabricating microelectromechanical devices often involves a liquid etch release process. Capillary forces during the liquid evaporation stage after the wet etch process can pull two surfaces together resulting in adhesion of suspended microstructures to the supporting substrate. This release related adhesion can greatly reduce yields. In this report, a wet etch release method that uses polystyrene microspheres in the final rinse liquid is investigated. The polystyrene microspheres act as physical barriers between the substrate and suspended microstructures during the final liquid evaporation phase. A plasma ashing process is utilized to completely remove the polystyrene microspheres from the microstructure surfaces. Using this process, release yields > 90% were achieved. It is found that the surface roughness of gold surfaces increases while that of the silicon is reduced due to a thin oxide that grows on the silicon surface during the plasma process.
Contributing Partner: UNT Libraries
Wettability of Silicon, Silicon Dioxide, and Organosilicate Glass

Wettability of Silicon, Silicon Dioxide, and Organosilicate Glass

Date: December 2009
Creator: Martinez, Nelson
Description: Wetting of a substance has been widely investigated since it has many applications to many different fields. Wetting principles can be applied to better select cleans for front end of line (FEOL) and back end of line (BEOL) cleaning processes. These principles can also be used to help determine processes that best repel water from a semiconductor device. It is known that the value of the dielectric constant in an insulator increases when water is absorbed. These contact angle experiments will determine which processes can eliminate water absorption. Wetting is measured by the contact angle between a solid and a liquid. It is known that roughness plays a crucial role on the wetting of a substance. Different surface groups also affect the wetting of a surface. In this work, it was investigated how wetting was affected by different solid surfaces with different chemistries and different roughness. Four different materials were used: silicon; thermally grown silicon dioxide on silicon; chemically vapor deposited (CVD) silicon dioxide on silicon made from tetraethyl orthosilicate (TEOS); and organosilicate glass (OSG) on silicon. The contact angle of each of the samples was measured using a goniometer. The roughness of the samples was measured by atomic force ...
Contributing Partner: UNT Libraries
FIRST PREV 1 2 3 4 NEXT LAST