You limited your search to:

 Department: Department of Materials Science and Engineering
 Collection: UNT Theses and Dissertations
Effect of Silyation on Organosilcate Glass Films

Effect of Silyation on Organosilcate Glass Films

Access: Use of this item is restricted to the UNT Community.
Date: August 2004
Creator: Kadam, Poonam
Description: Photoresist stripping with oxygen plasma ashing destroys the functional groups in organosilicate glass films and induce moisture uptake, causing low-k dielectric degradation. In this study, hexamethyldisilazane (HMDS), triethylchlorosilane and tripropylchlorosilane are used to repair the damage to organosilicate glass by the O2 plasma ashing process. The optimization of the surface functionalization of the organosilicate glass by the silanes and the thermal stability of the functionalized surfaces are investigated. These experimental results show that HMDS is a promising technique to repair the damage to OSG during the photoresist removal processing and that the heat treatment of the functionalized surfaces causes degradation of the silanes deteriorating the hydrophobicity of the films.
Contributing Partner: UNT Libraries
Effects of Plasma, Temperature and Chemical Reactions on Porous Low Dielectric Films for Semiconductor Devices

Effects of Plasma, Temperature and Chemical Reactions on Porous Low Dielectric Films for Semiconductor Devices

Date: December 2010
Creator: Osei-Yiadom, Eric
Description: Low-dielectric (k) films are one of the performance drivers for continued scaling of integrated circuit devices. These films are needed in microelectronic device interconnects to lower power consumption and minimize cross talk between metal lines that "interconnect" transistors. Low-k materials currently in production for the 45 and 65 nm node are most often organosilicate glasses (OSG) with dielectric constants near 2.8 and nominal porosities of 8-10%. The next generation of low-k materials will require k values 2.6 and below for the 45 nm device generation and beyond. The continuous decrease in device dimensions in ultra large scale integrated (ULSI) circuits have brought about the replacement of the silicon dioxide interconnect dielectric (ILD), which has a dielectric constant (k) of approximately 4.1, with low dielectric constant materials. Lowering the dielectric constant reduces the propagation delays, RC constant (R = the resistance of the metal lines; C = the line capacitance), and metal cross-talk between wires. In order to reduce the RC constants, a number of low-k materials have been studied for use as intermetal dielectrics. The k values of these dielectric materials can be lowered by replacing oxide films with carbon-based polymer films, incorporating hydrocarbon functional groups into oxide films (SiOCH ...
Contributing Partner: UNT Libraries
Electrical and Structure Properties of High-κ Barium Tantalite and Aluminum Oxide Interface with Zinc Oxide for Applications in Transparent Thin Film Transistors

Electrical and Structure Properties of High-κ Barium Tantalite and Aluminum Oxide Interface with Zinc Oxide for Applications in Transparent Thin Film Transistors

Date: August 2011
Creator: Kuo, Fang-Ling
Description: ZnO has generated interest for flexible electronics/optoelectronic applications including transparent thin film transistors (TFTs). For this application, low temperature processes that simultaneously yield good electrical conductivity and optical transparency and that are compatible with flexible substrates such as plastic, are of paramount significance. Further, gate oxides are a critical component of TFTs, and must exhibit low leakage currents and self-healing breakdown in order to ensure optimal TFTs switching performance and reliability. Thus, the objective of this work was twofold: (1) develop an understanding of the processing-structure-property relationships of ZnO and high-κ BaTa2O6 and Al2O3 (2) understand the electronic defect structure of BaTa2O6 /ZnO and Al2O3/ZnO interfaces and develop insight to how such interfaces may impact the switching characteristics (speed and switching power) of TFTs featuring these materials. Of the ZnO films grown by atomic layer deposition (ALD), pulsed laser deposition (PLD) and magnetron sputtering at 100-200 °C, the latter method exhibited the best combination of n-type electrical conductivity and optical transparency. These determinations were made using a combination of photoluminescence, photoluminescence excitation, absorption edge and Hall measurements. Metal-insulator-semiconductor devices were then fabricated with sputtered ZnO and high-κ BaTa2O6 and Al2O3 and the interfaces of high-κ BaTa2O6 and Al2O3 with ZnO ...
Contributing Partner: UNT Libraries
Electrochemical synthesis of CeO2 and CeO2/montmorillonite nanocomposites.

Electrochemical synthesis of CeO2 and CeO2/montmorillonite nanocomposites.

Date: December 2003
Creator: Wang, Qi
Description: Nanocrystalline cerium oxide thin films on metal and semiconductor substrates have been fabricated with a novel electrodeposition approach - anodic oxidation. X-ray diffraction analysis indicated that as-produced cerium oxide films are characteristic face-centered cubic fluorite structure with 5 ~ 20 nm crystal sizes. X-ray photoelectron spectroscopy study probes the non-stoichiometry property of as-produced films. Raman spectroscopy and Scanning Electron Microscopy have been applied to analyze the films as well. Deposition mode, current density, reaction temperature and pH have also been investigated and the deposition condition has been optimized for preferred oriented film formation: galvanostatic deposition with current density of -0.06 mA/cm2, T > 50oC and 7 < pH < 10. Generally, potentiostatic deposition results in random structured cerium oxide films. Sintering of potentiostatic deposited cerium oxide films leads to crystal growth and reach nearly full density at 1100oC. It is demonstrated that in-air heating favors the 1:2 stoichiometry of CeO2. Nanocrystalline cerium oxide powders (4 ~ 10 nm) have been produced with anodic electrochemical synthesis. X-ray diffraction and Raman spectroscopy were employed to investigate lattice expansion phenomenon related to the nanoscale cerium oxide particles. The pH of reaction solution plays an important role in electrochemical synthesis of cerium oxide films ...
Contributing Partner: UNT Libraries
Evaluation of hydrogen trapping in HfO2 high-κ dielectric thin films.

Evaluation of hydrogen trapping in HfO2 high-κ dielectric thin films.

Access: Use of this item is restricted to the UNT Community.
Date: August 2006
Creator: Ukirde, Vaishali
Description: Hafnium based high-κ dielectrics are considered potential candidates to replace SiO2 or SiON as the gate dielectric in complementary metal oxide semiconductor (CMOS) devices. Hydrogen is one of the most significant elements in semiconductor technology because of its pervasiveness in various deposition and optimization processes of electronic structures. Therefore, it is important to understand the properties and behavior of hydrogen in semiconductors with the final aim of controlling and using hydrogen to improve electronic performance of electronic structures. Trap transformations under annealing treatments in hydrogen ambient normally involve passivation of traps at thermal SiO2/Si interfaces by hydrogen. High-κ dielectric films are believed to exhibit significantly higher charge trapping affinity than SiO2. In this thesis, study of hydrogen trapping in alternate gate dielectric candidates such as HfO2 during annealing in hydrogen ambient is presented. Rutherford backscattering spectroscopy (RBS), elastic recoil detection analysis (ERDA) and nuclear reaction analysis (NRA) were used to characterize these thin dielectric materials. It was demonstrated that hydrogen trapping in bulk HfO2 is significantly reduced for pre-oxidized HfO2 prior to forming gas anneals. This strong dependence on oxygen pre-processing is believed to be due to oxygen vacancies/deficiencies and hydrogen-carbon impurity complexes that originate from organic precursors used in ...
Contributing Partner: UNT Libraries
First Principle Calculations of the Structure and Electronic Properties of Pentacene Based Organic and ZnO Based Inorganic Semiconducting Materials

First Principle Calculations of the Structure and Electronic Properties of Pentacene Based Organic and ZnO Based Inorganic Semiconducting Materials

Date: May 2012
Creator: Li, Yun
Description: In this thesis, I utilize first principles density functional theory (DFT) based calculations to investigate the structure and electronic properties including charge transfer behaviors and work function of two types of materials: pentacene based organic semiconductors and ZnO transparent conducting oxides, with an aim to search for high mobility n-type organic semiconductors and fine tuning work functions of ZnO through surface modifications. Based on DFT calculations of numerous structure combinations, I proposed a pentacene and perfluoro-pentacene alternating hybrid structures as a new type of n-type semiconductor. Based on the DFT calculations and Marcus charge transfer theory analysis, the new structure has high charge mobility and can be a promising new n-type organic semiconductor material. DFT calculations have been used to systematically investigate the effect of surface organic absorbate and surface defects on the work function of ZnO. It was found that increasing surface coverage of organic groups and decreasing surface defects lead to decrease of work functions, in excellent agreement with experimental results. First principles based calculations thus can greatly contribute to the investigating and designing of new electronic materials.
Contributing Partner: UNT Libraries
First Principles Calculations of the Site Substitution Behavior in Gamma Prime Phase in Nickel Based Superalloys

First Principles Calculations of the Site Substitution Behavior in Gamma Prime Phase in Nickel Based Superalloys

Date: August 2012
Creator: Chaudhari, Mrunalkumar
Description: Nickel based superalloys have superior high temperature mechanical strength, corrosion and creep resistance in harsh environments and found applications in the hot sections as turbine blades and turbine discs in jet engines and gas generator turbines in the aerospace and energy industries. The efficiency of these turbine engines depends on the turbine inlet temperature, which is determined by the high temperature strength and behavior of these superalloys. The microstructure of nickel based superalloys usually contains coherently precipitated gamma prime (?) Ni3Al phase within the random solid solution of the gamma () matrix, with the ? phase being the strengthening phase of the superalloys. How the alloying elements partition into the and ? phases and especially in the site occupancy behaviors in the strengthening ? phases play a critical role in their high temperature mechanical behaviors. The goal of this dissertation is to study the site substitution behavior of the major alloying elements including Cr, Co and Ti through first principles based calculations. Site substitution energies have been calculated using the anti-site formation, the standard defect formation formalism, and the vacancy formation based formalism. Elements such as Cr and Ti were found to show strong preference for Al sublattice, whereas Co ...
Contributing Partner: UNT Libraries
Functionalization and characterization of porous low-κ dielectrics.

Functionalization and characterization of porous low-κ dielectrics.

Access: Use of this item is restricted to the UNT Community.
Date: May 2005
Creator: Orozco-Teran, Rosa Amelia
Description: The incorporation of fluorine into SiO2 has been shown to reduce the dielectric constant of the existing materials by reducing the electrical polarizability. However, the incorporation of fluorine has also been shown to decrease film stability. Therefore, new efforts have been made to find different ways to further decrease the relative dielectric constant value of the existing low-k materials. One way to reduce the dielectric constant is by decreasing its density. This reduces the amount of polarizable materials. A good approach is increasing porosity of the film. Recently, fluorinated silica xerogel films have been identified as potential candidates for applications such as interlayer dielectric materials in CMOS technology. In addition to their low dielectric constants, these films present properties such as low refractive indices, low thermal conductivities, and high surface areas. Another approach to lower k is incorporating lighter atoms such as hydrogen or carbon. Silsesquioxane based materials are among them. However, additional integration issues such as damage to these materials caused by plasma etch, plasma ash, and wet etch processes are yet to be overcome. This dissertation reports the effects of triethoxyfluorosilane-based (TEFS) xerogel films when reacted with silylation agents. TEFS films were employed because they form robust silica ...
Contributing Partner: UNT Libraries
Growth, Structure and Tribological Properties of Atomic Layer Deposited Lubricious Oxide Nanolaminates

Growth, Structure and Tribological Properties of Atomic Layer Deposited Lubricious Oxide Nanolaminates

Date: December 2010
Creator: Mensah, Benedict Anyamesem
Description: Friction and wear mitigation is typically accomplished by introducing a shear accommodating layer (e.g., a thin film of liquid) between surfaces in sliding and/or rolling contacts. When the operating conditions are beyond the liquid realm, attention turns to solid coatings. Solid lubricants have been widely used in governmental and industrial applications for mitigation of wear and friction (tribological properties). Conventional examples of solid lubricants are MoS2, WS2, h-BN, and graphite; however, these and some others mostly perform best only for a limited range of operating conditions, e.g. ambient air versus dry nitrogen and room temperature versus high temperatures. Conversely, lubricious oxides have been studied lately as good potential candidates for solid lubricants because they are thermodynamically stable and environmentally robust. Oxide surfaces are generally inert and typically do not form strong adhesive bonds like metals/alloys in tribological contacts. Typical of these oxides is ZnO. The interest in ZnO is due to its potential for utility in a variety of applications. To this end, nanolaminates of ZnO, Al2O3, ZrO2 thin films have been deposited at varying sequences and thicknesses on silicon substrates and high temperature (M50) bearing steels by atomic layer deposition (ALD). The top lubricious, nanocrystalline ZnO layer was structurally-engineered ...
Contributing Partner: UNT Libraries
Hydrophobic, fluorinated silica xerogel for low-k applications.

Hydrophobic, fluorinated silica xerogel for low-k applications.

Date: May 2004
Creator: Zhang, Zhengping
Description: A new hydrophobic hybrid silica film was synthesized by introducing one silicon precursor (as modifiers) into another precursor (network former). Hybrid films have improved properties. Hydrolysis and condensation of dimethyldiethoxysilane (DMDES) (solvent (EtOH) to DMDES molar ratio R = 4, water to DMDES molar ratio r = 4, 0.01 N HCl catalyst) was analyzed using high-resolution liquid 29Si NMR. It was found that after several hours, DMDES hydrolyzed and condensed into linear and cyclic species. Films from triethoxyfluorosilane (TEFS) have been shown to be promising interlayer dielectric materials for future integrated circuit applications due to their low dielectric constant and high mechanical properties (i.e., Young's modulus (E) and hardness (H)). Co-condensing with TEFS, linear structures from DMDES hydrolysis and condensation reactions rendered hybrid films hydrophobic, and cyclic structures induced the formation of pores. Hydrophobicity characterized by contact angle, thermal stability by thermogravimetric analysis (TGA), Fourier transform Infrared spectroscopy (FTIR), contact angle, and dynamic secondary ion mass spectroscopy (DSIMS), dielectric constant determined by impedance measurement, and mechanical properties (E and H) determined by nanoindentation of TEFS and TEFS + DMDES films were compared to study the effect of DMDES on the TEFS structure. Hybrid films were more hydrophobic and thermally stable. ...
Contributing Partner: UNT Libraries