You limited your search to:

 Department: Department of Materials Science and Engineering
 Degree Level: Master's
 Collection: UNT Theses and Dissertations
An Assessment of Uncommon Titanium Binary Systems: Ti-Zn, Ti-Cu, and  Ti-Sb

An Assessment of Uncommon Titanium Binary Systems: Ti-Zn, Ti-Cu, and Ti-Sb

Date: May 2015
Creator: Brice, David
Description: The current study focuses on phase stability and evolution in the titanium-zinc titanium-copper and titanium-antimony systems. The study utilized the Laser Engineering Net Shaping (LENS™) processing technique to deposit compositionally graded samples of three binary system in order to allow the assessment of phase stability and evolution as a function of composition and temperature the material is subjected to. Through LENS™ processing it was possible to create graded samples from Ti-xSb (up to 13wt%) and Ti-xCu (up to 16wt%). The LENS™ deposited gradient were solutionized, and step quenched to specific aging temperature, and the resulting microstructures and phase were characterized utilizing XRD, EDS, SEM, FIB and TEM. The Ti-Zn system proved incapable of being LENS™ deposited due to the low vaporization temperature of Zn; however, a novel processing approach was developed to drip liquid Zn onto Ti powder at temperatures above β transus temperature of Ti (882 ◦C) and below the vaporization temperature of Zn (907 ◦C). The product of this processing technique was characterized in a similar way as the graded LENS™ depositions. From measurements performed on Ti-Sb it seems that Sb could be a potential α stabilizer in Ti due to the presence of a mostly homogeneous α ...
Contributing Partner: UNT Libraries
Surface Topography and Aesthetics of Recycled Cross-Linked Polyethylene Wire and Cable Coatings

Surface Topography and Aesthetics of Recycled Cross-Linked Polyethylene Wire and Cable Coatings

Access: Use of this item is restricted to the UNT Community.
Date: December 2014
Creator: Xie, Wa
Description: Our research focuses on re-using a waste a material, cross-linked polyethylene abbreviated XLPE, which is a widely used coating for wires. XLPE is strong and has excellent thermal properties due to its chemical structure - what leads to the significance of recycling this valuable polymer. Properties of XLPE include good resistance to heat, resistance to chemical corrosion, and high impact strength. A wire is usually composed of a metal core conductor and polymeric coating layers. One creates a new coating, including little pieces of recycled XLPE in the lower layer adjacent to the wire, and virgin XLPE only in the upper layer. Industries are often wasting materials which might be useful. Mostly, some returned or excess products could be recycled to create a new type of product or enable the original use. This method helps cleaning the waste, lowers the costs, and enhances the income of the manufacturing company. With the changing of the thickness of the outer layer, the roughness changes significantly. Moreover, different processing methods result in surfaces that look differently.
Contributing Partner: UNT Libraries
Processing and Characterization of Polycarbonate Foams with Supercritical Co2 and 5-Phenyl-1h-Tetrazole

Processing and Characterization of Polycarbonate Foams with Supercritical Co2 and 5-Phenyl-1h-Tetrazole

Date: May 2015
Creator: Cloarec, Thomas
Description: Since their discovery in the 1930s, polymeric foams have been widely used in the industry for a variety of applications such as acoustical and thermal insulation, filters, absorbents etc. The reason for this ascending trend can be attributed to factors such as cost, ease of processing and a high strength to weight ratio compared to non-foamed polymers. The purpose of this project was to develop an “indestructible” material made of polycarbonate (PC) for industrial applications. Due to the high price of polycarbonate, two foaming methods were investigated to reduce the amount of material used. Samples were foamed physically in supercritical CO2 or chemically with 5-phenyl-1H-tetrazole. After thermal characterization of the foams in differential scanning calorimetry (DSC), we saw that none of the foaming methods had an influence on the glass transition of polycarbonate. Micrographs taken in scanning electron microscopy (SEM) showed that foams obtained in physical and chemical foaming had different structures. Indeed, samples foamed in supercritical CO2 exhibited a microcellular opened-cell structure with a high cell density and a homogeneous cell distribution. On the other hand, samples foamed with 5-phenyl-1H-tetrazole had a macrocellular closed-cell structure with a much smaller cell density and a random cell distribution. Compression testing showed ...
Contributing Partner: UNT Libraries
Nanohybrids Based on Solid and Foam Polyurethanes

Nanohybrids Based on Solid and Foam Polyurethanes

Date: May 2015
Creator: Bo, Chong
Description: Polymer nanocomposites are a going part of Materials Science and Engineering. These new composite materials exhibit dimensional and thermal stability of inorganic materials and toughness and dielectric properties of polymers. Development of nanocomposites become an important approach to create high-performance composite materials. In this study silica, fly ash, silica nanotubes and carbon black particles have been added to modify polyurethane foam and thermoplastic polyurethanes. It has been found that the addition of silica can diminish the size of foam bubbles, resulting in an increased stiffness of the material, increase of the compressive strength, and greater resistance to deformation. However, the uniformity of bubbles is reduced, resulting in increased friction of the material. Fly ash added to the foam can make bubbles smaller and improve uniformity of cells. Therefore, the material stiffness and compressive strength, resistance to deformation, and has little impact on the dynamic friction of the material. Adding nanotubes make bubble size unequal, and the arrangement of the bubble uneven, resulting in decreased strength of the material, while the friction increases. After the addition of carbon black to the polyurethane foam, due to the special surface structure of the carbon black, the foam generates more bubbles during the foaming ...
Contributing Partner: UNT Libraries
Atomistic Computer Simulations of Diffusion Mechanisms in Lithium Lanthanum Titanate Solid State Electrolytes for Lithium Ion Batteries

Atomistic Computer Simulations of Diffusion Mechanisms in Lithium Lanthanum Titanate Solid State Electrolytes for Lithium Ion Batteries

Date: August 2014
Creator: Chen, Chao-Hsu
Description: Solid state lithium ion electrolytes are important to the development of next generation safer and high power density lithium ion batteries. Perovskite-structured LLT is a promising solid electrolyte with high lithium ion conductivity. LLT also serves as a good model system to understand lithium ion diffusion behaviors in solids. In this thesis, molecular dynamics and related atomistic computer simulations were used to study the diffusion behavior and diffusion mechanism in bulk crystal and grain boundary in lithium lanthanum titanate (LLT) solid state electrolytes. The effects of defect concentration on the structure and lithium ion diffusion behaviors in LLT were systematically studied and the lithium ion self-diffusion and diffusion energy barrier were investigated by both dynamic simulations and static calculations using the nudged elastic band (NEB) method. The simulation results show that there exist an optimal vacancy concentration at around x=0.067 at which lithium ions have the highest diffusion coefficient and the lowest diffusion energy barrier. The lowest energy barrier from dynamics simulations was found to be around 0.22 eV, which compared favorably with 0.19 eV from static NEB calculations. It was also found that lithium ions diffuse through bottleneck structures made of oxygen ions, which expand in dimension by 8-10% ...
Contributing Partner: UNT Libraries
A Study of Power Generation From a Low-cost Hydrokinetic Energy System

A Study of Power Generation From a Low-cost Hydrokinetic Energy System

Date: August 2013
Creator: Davila Vilchis, Juana Mariel
Description: The kinetic energy in river streams, tidal currents, or other artificial water channels has been used as a feasible source of renewable power through different conversion systems. Thus, hydrokinetic energy conversion systems are attracting worldwide interest as another form of distributed alternative energy. Because these systems are still in early stages of development, the basic approaches need significant research. The main challenges are not only to have efficient systems, but also to convert energy more economically so that the cost-benefit analysis drives the growth of this alternative energy form. One way to view this analysis is in terms of the energy conversion efficiency per unit cost. This study presents a detailed assessment of a prototype hydrokinetic energy system along with power output costs. This experimental study was performed using commercial low-cost blades of 20 in diameter inside a tank with water flow speed up to 1.3 m/s. The work was divided into two stages: (a) a fixed-pitch blade configuration, using a radial permanent magnet generator (PMG), and (b) the same hydrokinetic turbine, with a variable-pitch blade and an axial-flux PMG. The results indicate that even though the efficiency of a simple blade configuration is not high, the power coefficient is ...
Contributing Partner: UNT Libraries
Surface Modifications to Enhance the Wear Resistance and the Osseo-integration Properties of Biomedical Ti-alloy

Surface Modifications to Enhance the Wear Resistance and the Osseo-integration Properties of Biomedical Ti-alloy

Date: August 2013
Creator: Kami, Pavani
Description: The current study focuses on improving the wear resistance of femoral head component and enhancing the osseo-integration properties of femoral stem component of a hip implant made of a new generation low modulus alloy, Ti-35Nb-7Zr-5Ta or TNZT. Different techniques that were adopted to improve the wear resistance of low-modulus TNZT alloy included; (a) fabrication of graded TNZT-xB (x= 0, 1, 2 wt%) samples using LENS, (b) oxidation, and (c) LASER nitriding of TNZT. TNZT-1B and TNZT-O samples have shown improved wear resistance when tested against UHMWPE ball in SBF medium. A new class of bio-ceramic coatings based on calcium phosphate (CaP), was applied on the TNZT sample surface and was further laser processed with the objective of enhancing their osseo-integration properties. With optimized LASER parameters, TNZT-CaP samples have shown improved corrosion resistance, surface wettability and cellular response when compared to the base TNZT sample.
Contributing Partner: UNT Libraries
Thermoplastic and Thermoset Natural Fiber Composite and Sandwich Performance

Thermoplastic and Thermoset Natural Fiber Composite and Sandwich Performance

Access: Use of this item is restricted to the UNT Community.
Date: May 2014
Creator: Yang, Bing
Description: The objective of this thesis is to investigate the effects of adding natural fiber (kenaf fiber, retted kenaf fiber, and sugarcane fiber) into polymer materials. The effects are obtained by considering three main parts. 1. Performance in thermoplastic composites. The effect of fiber retting on polymer composite crystallization and mechanical performance was investigated. PHBV/PBAT in 80/20 blend ratio was modified using 5% by weight kenaf fiber. Dynamic mechanical analysis of the composites was done to investigate the glass transition and the modulus at sub-ambient and ambient temperatures. ESEM was conducted to analyze fiber topography which revealed smoother surfaces on the pectinase retted fibers. 2. Performance in thermoset composites. The effect of the incorporation of natural fibers of kenaf and of sugarcane combined with the polyester resin matrix is investigated. A comparison of mechanical properties of kenaf polyester composite, sugarcane polyester composite and pure polyester in tensile, bending, dynamic mechanical thermal analysis (DMA) and moisture test on performance is measured.. 3. Performance in sandwich composites. The comparison of the performance characteristics and mechanical properties of natural fiber composites panels with soft and rigid foam cores are evaluated. A thorough test of the mechanical behavior of composites sandwich materials in tensile, bending ...
Contributing Partner: UNT Libraries
Dislocation Dynamics Simulations of Plasticity in Cu Thin Films

Dislocation Dynamics Simulations of Plasticity in Cu Thin Films

Date: August 2013
Creator: Wu, Han
Description: Strong size effects in plastic deformation of thin films have been experimentally observed, indicating non-traditional deformation mechanisms. These observations require improved understanding of the behavior of dislocation in small size materials, as they are the primary plastic deformation carrier. Dislocation dynamics (DD) is a computational method that is capable of directly simulating the motion and interaction of dislocations in crystalline materials. This provides a convenient approach to study micro plasticity in thin films. While two-dimensional dislocation dynamics simulation in thin film proved that the size effect fits Hall-Petch equation very well, there are issues related to three-dimensional size effects. In this work, three-dimensional dislocation dynamics simulations are used to study model cooper thin film deformation. Grain boundary is modeled as impenetrable obstacle to dislocation motion in this work. Both tension and cyclic loadings are applied and a wide range of size and geometry of thin films are studied. The results not only compare well with experimentally observed size effects on thin film strength, but also provide many details on dislocation processes in thin films, which could greatly help formulate new mechanisms of dislocation-based plasticity.
Contributing Partner: UNT Libraries
Laser Deposition, Heat-treatment, and Characterization of the Binary Ti-xmn System

Laser Deposition, Heat-treatment, and Characterization of the Binary Ti-xmn System

Date: August 2013
Creator: Avasarala, Chandana
Description: The present research seeks to characterization of an additively manufactured and heat-treated Ti-xMn gradient alloy, a binary system that has largely been unexplored. In order to rapidly assess this binary system, compositionally graded Ti-xMn (0<x<15 wt%) specimens were fabricated using the LENS (Laser Engineered Net Shaping) and were subsequently heat-treated and characterized using a wide range of techniques. Microstructural changes with respect to the change in thermal treatments, hardness and chemical composition were observed and will be presented. These include assessments of both continuous cooling, leading to observations of both equilibrium and metastable phases, including the titanium martensites, and to direct aging studies looking for composition regimes that produce highly refined alpha precipitates – a subject of great interest given recent understandings of non-classical nucleation and growth mechanisms. The samples were characterized using SEM, EDS, TEM, and XRD and the properties probed using a Vickers Microhardness tester.
Contributing Partner: UNT Libraries
FIRST PREV 1 2 3 4 5 NEXT LAST