You limited your search to:

  Access Rights: Public
 Department: Department of Materials Science and Engineering
 Degree Level: Master's
 Collection: UNT Theses and Dissertations
Amorphization and De-vitrification in Immiscible Copper-Niobium Alloy Thin Films

Amorphization and De-vitrification in Immiscible Copper-Niobium Alloy Thin Films

Date: May 2007
Creator: Puthucode Balakrishnan, Anantharamakrishnan
Description: While amorphous phases have been reported in immiscible alloy systems, there is still some controversy regarding the reason for the stabilization of these unusual amorphous phases. Direct evidence of nanoscale phase separation within the amorphous phase forming in immiscible Cu-Nb alloy thin films using 3D atom probe tomography has been presented. This evidence clearly indicates that the nanoscale phase separation is responsible for the stabilization of the amorphous phase in such immiscible systems since it substantially reduces the free energy of the undercooled liquid (or amorphous) phase, below that of the competing supersaturated crystalline phases. The devitrification of the immiscible Cu-Nb thin film of composition Cu-45% Nb has been studied in detail with the discussion on the mechanism of phase transformation. The initial phase separation in the amorphous condition seems to play a vital role in the crystallization of the thin film. Detailed analysis has been done using X-ray diffraction, transmission electron microscopy and 3D atom probe tomography.
Contributing Partner: UNT Libraries
Atomistic Studies of Point Defect Migration Rates in the Iron-Chromium System

Atomistic Studies of Point Defect Migration Rates in the Iron-Chromium System

Date: August 2010
Creator: Hetherly, Jeffery
Description: Generation and migration of helium and other point defects under irradiation causes ferritic steels based on the Fe-Cr system to age and fail. This is motivation to study point defect migration and the He equation of state using atomistic simulations due to the steels' use in future reactors. A new potential for the Fe-Cr-He system developed by collaborators at the Lawrence Livermore National Laboratory was validated using published experimental data. The results for the He equation of state agree well with experimental data. The activation energies for the migration of He- and Fe-interstitials in varying compositions of Fe-Cr lattices agree well with prior work. This research did not find a strong correlation between lattice ordering and interstitial migration energy
Contributing Partner: UNT Libraries
Bioresorbable Polymer Blend Scaffold for Tissue Engineering

Bioresorbable Polymer Blend Scaffold for Tissue Engineering

Date: May 2011
Creator: Manandhar, Sandeep
Description: Tissue engineering merges the disciplines of study like cell biology, materials science, engineering and surgery to enable growth of new living tissues on scaffolding constructed from implanted polymeric materials. One of the most important aspects of tissue engineering related to material science is design of the polymer scaffolds. The polymer scaffolds needs to have some specific mechanical strength over certain period of time. In this work bioresorbable aliphatic polymers (PCL and PLLA) were blended using extrusion and solution methods. These blends were then extruded and electrospun into fibers. The fibers were then subjected to FDA standard in vitro immersion degradation tests where its mechanical strength, water absorption, weight loss were observed during the eight weeks. The results indicate that the mechanical strength and rate of degradation can be tailored by changing the ratio of PCL and PLLA in the blend. Processing influences these parameters, with the loss of mechanical strength and rate of degradation being higher in electrospun fibers compared to those extruded. A second effort in this thesis addressed the potential separation of the scaffold from the tissue (loss of apposition) due to the differences in their low strain responses. This hypothesis that using knit with low tension will ...
Contributing Partner: UNT Libraries
Corrosion Protection of Aerospace Grade Magnesium Alloy Elektron 43™ for Use in Aircraft Cabin Interiors

Corrosion Protection of Aerospace Grade Magnesium Alloy Elektron 43™ for Use in Aircraft Cabin Interiors

Date: August 2013
Creator: Baillio, Sarah S.
Description: Magnesium alloys exhibit desirable properties for use in transportation technology. In particular, the low density and high specific strength of these alloys is of interest to the aerospace community. However, the concerns of flammability and susceptibility to corrosion have limited the use of magnesium alloys within the aircraft cabin. This work studies a magnesium alloy containing rare earth elements designed to increase resistance to ignition while lowering rate of corrosion. The microstructure of the alloy was documented using scanning electron microscopy. Specimens underwent salt spray testing and the corrosion products were examined using energy dispersive spectroscopy.
Contributing Partner: UNT Libraries
Deposition and characterization of pentacene film.

Deposition and characterization of pentacene film.

Date: December 2003
Creator: Singh, Nidhi
Description: Many organic materials have been studied to be used as semiconductors, few of them being pentacene and polythiophene. Organic semiconductors have been investigated to make organic thin film transistors. Pentacene has been used in the active region of the transistors. Transistors fabricated with pentacene do not have very high mobility. But in some applications, high mobility is not needed. In such application other properties of organic transistors are used, such as, ease of production and flexibility. Organic thin film transistors (OTFT) can find use as low density storage devices, such as smart cards or I.D. tags, and displays. OTFT are compatible with polymeric substrates and hence can find use as flexible computer screens. This project aims at making 'smart clothes', the cheap way, with pentacene based OTFT. This problem in lieu of thesis describes a way to deposit pentacene films and characterize it. Pentacene films were deposited on substrates and characterized using x-ray diffraction (XRD) and Fourier transform infrared spectroscopy (FTIR). The substrate used was ~1500Å platinum on silicon wafer or bare silicon wafer. was used. A deposition system for vacuum deposition of pentacene was assembled. The XRD data for deposited pentacene films shows the presence of two phases, single ...
Contributing Partner: UNT Libraries
Determination of wear in polymers using multiple scratch test.

Determination of wear in polymers using multiple scratch test.

Date: August 2004
Creator: Damarla, Gowrisankar
Description: Wear is an important phenomenon that occurs in all the polymer applications in one form or the other. However, important links between materials properties and wear remain illusive. Thus optimization of material properties requires proper understanding of polymer properties. Studies to date have typically lacked systematic approach to all polymers and wear test developed are specific to some polymer classes. In this thesis, different classes of polymers are selected and an attempt is made to use multiple scratch test to define wear and to create a universal test procedure that can be employed to most of the polymers. In each of the materials studied, the scratch penetration depth s reaches a constant value after certain number of scratches depending upon the polymer and its properties. Variations in test parameters like load and speed are also studied in detail to understand the behavior of polymers and under different conditions. Apart from polystyrene, all the other polymers studied under multiple scratch test reached asymptotes at different scratch numbers.
Contributing Partner: UNT Libraries
Dislocation Dynamics Simulations of Plasticity in Cu Thin Films

Dislocation Dynamics Simulations of Plasticity in Cu Thin Films

Date: August 2013
Creator: Wu, Han
Description: Strong size effects in plastic deformation of thin films have been experimentally observed, indicating non-traditional deformation mechanisms. These observations require improved understanding of the behavior of dislocation in small size materials, as they are the primary plastic deformation carrier. Dislocation dynamics (DD) is a computational method that is capable of directly simulating the motion and interaction of dislocations in crystalline materials. This provides a convenient approach to study micro plasticity in thin films. While two-dimensional dislocation dynamics simulation in thin film proved that the size effect fits Hall-Petch equation very well, there are issues related to three-dimensional size effects. In this work, three-dimensional dislocation dynamics simulations are used to study model cooper thin film deformation. Grain boundary is modeled as impenetrable obstacle to dislocation motion in this work. Both tension and cyclic loadings are applied and a wide range of size and geometry of thin films are studied. The results not only compare well with experimentally observed size effects on thin film strength, but also provide many details on dislocation processes in thin films, which could greatly help formulate new mechanisms of dislocation-based plasticity.
Contributing Partner: UNT Libraries
Dynamic Precipitation of Second Phase Under Deformed Condition in Mg-nd Based Alloy

Dynamic Precipitation of Second Phase Under Deformed Condition in Mg-nd Based Alloy

Date: December 2013
Creator: Dendge, Nilesh Bajirao
Description: Magnesium alloys are the lightweight structural materials with high strength to weigh ratio that permits their application in fuel economy sensitive automobile industries. Among the several flavors of of Mg-alloys, precipitation hardenable Mg-rare earth (RE) based alloys have shown good potential due to their favorable creep resistance within a wide window of operating temperatures ranging from 150°C to 300°C. A key aspect of Mg-RE alloys is the presence of precipitate phases that leads to strengthening of such alloys. Several notable works, in literature, have been done to examine the formation of such precipitate phases. However, there are very few studies that evaluated the effect stress induced deformation on the precipitation in Mg-RE alloys. Therefore, the objective of this work is to examine influence of deformation on the precipitation of Mg-Nd based alloys. To address this problem, precipitation in two Mg-Nd based alloys, subjected to two different deformation conditions, and was examined via transmission electron microscopy (TEM) and atom probe tomography (APT). In first deformation condition, Md-2.6wt%Nd alloy was subjected to creep deformation (90MPa / 177ºC) to failure. Effect of stress-induced deformation was examined by comparing and contrasting with precipitation in non-creep tested specimens subjected to isothermal annealing (at 177ºC). In ...
Contributing Partner: UNT Libraries
First Principle Calculations of the Structure and Electronic Properties of Pentacene Based Organic and ZnO Based Inorganic Semiconducting Materials

First Principle Calculations of the Structure and Electronic Properties of Pentacene Based Organic and ZnO Based Inorganic Semiconducting Materials

Date: May 2012
Creator: Li, Yun
Description: In this thesis, I utilize first principles density functional theory (DFT) based calculations to investigate the structure and electronic properties including charge transfer behaviors and work function of two types of materials: pentacene based organic semiconductors and ZnO transparent conducting oxides, with an aim to search for high mobility n-type organic semiconductors and fine tuning work functions of ZnO through surface modifications. Based on DFT calculations of numerous structure combinations, I proposed a pentacene and perfluoro-pentacene alternating hybrid structures as a new type of n-type semiconductor. Based on the DFT calculations and Marcus charge transfer theory analysis, the new structure has high charge mobility and can be a promising new n-type organic semiconductor material. DFT calculations have been used to systematically investigate the effect of surface organic absorbate and surface defects on the work function of ZnO. It was found that increasing surface coverage of organic groups and decreasing surface defects lead to decrease of work functions, in excellent agreement with experimental results. First principles based calculations thus can greatly contribute to the investigating and designing of new electronic materials.
Contributing Partner: UNT Libraries
Indentation induced deformation in metallic materials.

Indentation induced deformation in metallic materials.

Date: December 2005
Creator: Vadlakonda, Suman
Description: Nanoindentation has brought in many features of research over the past decade. This novel technique is capable of producing insights into the small ranges of deformation. This special point has brought a lot of focus in understanding the deformation behavior under the indenter. Nickel, iron, tungsten and copper-niobium alloy system were considered for a surface deformation study. All the samples exhibited a spectrum of residual deformation. The change in behavior with indentation and the materials responses to deformation at low and high loads is addressed in this study. A study on indenter geometry, which has a huge influence on the contact area and subsequently the hardness and modulus value, has been attempted. Deformation mechanisms that govern the plastic flow in materials at low loads of indentation and their sensitivity to the rate of strain imparted has been studied. A transition to elastic, plastic kind of a tendency to an elasto-plastic tendency was seen with an increase in the strain rate. All samples exhibited the same kind of behavior and a special focus is drawn in comparing the FCC nickel with BCC tungsten and iron where the persistence of the elastic, plastic response was addressed. However there is no absolute reason ...
Contributing Partner: UNT Libraries
FIRST PREV 1 2 3 4 NEXT LAST