Search Results

Accelerated Corrosion Test with Operation Simulation of All-Aluminum Microchannel Heat Exchangers
The HVAC&R industry is looking to transition from copper-aluminum heat exchangers to all-aluminum microchannel technology. The want for the transition stemmed from seeing the performance improvement of all-aluminum microchannel radiators in the automotive industry. Applications differ between the two industries; therefore, applying this technology for HVAC&R use must be validated. Research towards operating modes of an all-aluminum heat exchanger in a defined corrosive environment will provide the industry with a better understanding of heat exchanger design and heat exchanger material selection. The worth in this is preventing overdesign and producing more efficient heat exchangers. Furthermore, ASHRAE members and the corrosion community will find value in a defined corrosion system and corrosion test procedure. The information gained through past research has progressed assessment of material performance; however, the methods improperly simulate and expedite natural weathering. The most common method being used is the ASTM (American Society of Testing Materials) Sea Water Acetic Acid Test. The research discussed in this paper was focused on improving a standard corrosion system by implementing system modifications to simulate heat exchanger operation while performing a modified wet-dry cyclic test (e.g. ASTM G85 Annex 5). The goal is to produce results that are more representative of natural corrosion behavior and its forms. Current results were gathered from five of ten samples that underwent initial testing. Finally, possible improvements towards the chamber system and the test method, including the salt solution, are discussed.
Analytical Model for Lateral Deflection in Cold-formed Steel Framed Shear Walls with Steel Sheathing
An analytical model for lateral deflection in cold-formed steel shear walls sheathed with steel is developed in this research. The model is based on the four factors: fastener displacement, steel sheet deformation, and hold-down deformation, which are from the effective strip concept and a complexity factor, which accounts for the additional influential factors not considered in the previous three terms. The model uses design equations based on the actual material and mechanical properties of the shear wall. Furthermore, the model accounts for aggressive and conservative designers by predicting deflection at different shear strength degrees.
Analytical Model of Cold-formed Steel Framed Shear Wall with Steel Sheet and Wood-based Sheathing
The cold-formed steel framed shear walls with steel sheets and wood-based sheathing are both code approved lateral force resisting system in light-framed construction. In the United States, the current design approach for cold-formed steel shear walls is capacity-based and developed from full-scale tests. The available design provisions provide nominal shear strength for only limited wall configurations. This research focused on the development of analytical models of cold-formed steel framed shear walls with steel sheet and wood-based sheathing to predict the nominal shear strength of the walls at their ultimate capacity level. Effective strip model was developed to predict the nominal shear strength of cold-formed steel framed steel sheet shear walls. The proposed design approach is based on a tension field action of the sheathing, shear capacity of sheathing-to-framing fastener connections, fastener spacing, wall aspect ratio, and material properties. A total of 142 full scale test data was used to verify the proposed design method and the supporting design equations. The proposed design approach shows consistent agreement with the test results and the AISI published nominal strength values. Simplified nominal strength model was developed to predict the nominal shear strength of cold-formed steel framed wood-based panel shear walls. The nominal shear strength is determined based on the shear capacity of individual sheathing-to-framing connections, wall height, and locations of sheathing-to-framing fasteners. The proposed design approach shows a good agreement with 179 full scale shear wall test data. This analytical method requires some efforts in testing of sheathing-to-framing connections to determine their ultimate shear capacity. However, if appropriate sheathing-to-framing connection capacities are provided, the proposed design method provides designers with an analytical tool to determine the nominal strength of the shear walls without conducting full-scale tests.
Bearing Strength of Cold Formed Steel Bolted Connections in Trusses
The existing design provision in North American Specification for Cold- Formed Steel Structural Member (AISI S100) for the bearing strength of bolted connections were developed from tests on bolted connected sheets which were restrained by bolt nut and head with or without washers. However, in the cold-formed assemblies, particularly in trusses, the single bolt goes through both sides of the connected sections, making the connected sheets on each side unrestrained. the warping of the unrestrained sheet may reduce the bearing strength of the bolted connection. This research investigates the behavior and strength of bearing failure in bolted connections in cold-formed steel trusses. Tensile tests were conducted on trusses connections with various material thicknesses. It was found that the AISI S100 works well for thick connections but provides unconservative predictions for thin materials. Based on the experimental results, a modified bearing strength method is proposed for calculating the bearing strength of bolted truss connections. the proposed method can be used for any cold-formed steel connections with unrestrained sheet.
Cold-Formed Steel Bolted Connections Using Oversized and Slotted Holes without Washers
In cold-formed steel (CFS) construction, bolted connections without washers for either oversized or slotted holes may significantly expedite the installation process and lower the cost. However, the North American Specification (AISI S100, 2007) for the Design of Cold-Formed Steel Structural Members requires washers to be installed in bolted connections with oversized or slotted holes. A research project (Phase 1) sponsored by American Iron and Steel Institute (AISI) was recently completed at the University of North Texas (UNT) that investigated the performance and strength of bolted CFS connections with oversized and slotted holes without using washers. The research presented in this thesis is the Phase 2 project in which the bolted CFS connections were studied in a broader respect in terms of the failure mechanism, the material thickness, and the hole configurations. Single shear and double shear connections without washers using oversized holes, oversized combined with standard or slotted holes were experimentally examined. Combined with Phase 1 results, the Phase 2 gives a comprehensive evaluation of the behavior and strength of bolted CFS connections with oversized and slotted holes without using washers. Revisions to the existing AISI North American Specification requirements for bolted connections are proposed to account for the reduction in the connection strength caused by the oversized and slotted hole configurations without washers. Specific LRFD and LSD resistance factors and ASD safety factors for different hole configurations in terms of the new proposed methods were presented.
Cold-formed Steel Framed Shear Wall Sheathed with Corrugated Sheet Steel
Incombustibility is one important advantage of the sheet steel sheathed shear wall over wood panel sheathed shear wall. Compared to shear wall sheathed with plywood and OSB panel, shear wall sheathed with flat sheet steel behaved lower shear strength. Although shear wall sheathed with corrugated sheet steel exhibited high nominal strength and high stiffness, the shear wall usually behaved lower ductility resulting from brittle failure at the connection between the sheathing to frames. This research is aimed at developing modifications on the corrugated sheathing to improve the ductility of the shear wall as well as derive practical response modification factor by establishing correct relationship between ductility factor ? and response modification factor R. Totally 21 monotonic and cyclic full-scale shear wall tests were conducted during the winter break in 2012 by the author in NUCONSTEEL Materials Testing Laboratory in the University of North Texas. The research investigated nineteen 8 ft. × 4 ft. shear walls with 68 mil frames and 27 mil corrugation sheet steel in 11 configurations and two more shear walls sheathed with 6/17-in.OSB and 15/32-in. plywood respectively for comparison. The shear walls, which were in some special cutting arrangement patterns, performed better under lateral load conditions according to the behavior of ductility and shear strength and could be used as lateral system in construction.
Cold-Formed Steel Member Connections Using BAC Screw Fasteners
In this project, the main research objective is intend to seek criteria for evaluating the capacity of BAC screw fasteners with mixed configuration of waterproof seal washer, sealer tape and different pre-drill holes to determine shear and tension strength values for the screws used in cold-formed steel connections. The thesis presents the design methods and test program conducted to investigate the behavior and strength of the screw connections in shear and tension test. Test results were compared with AISI design provisions to determine if new design equations will be developed for those screws used in BAC cooling tower applications. LRFD resistance factors and ASD safety factors were investigated to the proposed design equations.
Comparative Analysis and Implementation of High Data Rate Wireless Sensor Network Simulation Frameworks
This thesis focuses on developing a high data rate wireless sensor network framework that could be integrated with hardware prototypes to monitor structural health of buildings. In order to better understand the wireless sensor network architecture and its consideration in structural health monitoring, a detailed literature review on wireless sensor networks has been carried out. Through research, it was found that there are numerous simulation software packages available for wireless sensor network simulation. One suitable software was selected for modelling the framework. Research showed that Matlab/Simulink was the most suitable environment, and as a result, a wireless sensor network framework was designed in Matlab/Simulink. Further, the thesis illustrates modeling of a simple accelerometer sensor, such as those used in wireless sensor networks in Matlab/Simulink using a mathematical description. Finally, the framework operation is demonstrated with 10 nodes, and data integrity is analyzed with cyclic redundancy check and transmission error rate calculations.
Construction Management Methods and Techniques in Army Tactical Shelter
This thesis presents a research effort aimed at developing using construction methods and techniques in army tactical shelter. The beginning step focuses on developing and identifying different activities and work breakdown structure applicable in shelter prototype. The next step focuses on identifying resource allocation. This include allocate resources based on the delivered project as per alternative one and for the second alternative as optimization, resource allocation modified and tried to level and minimize resource peak. In addition, the cost calculated for the whole project as well as for each WBS and activities which consider as alternative one and in the second alternative, cost mitigation applied according to available resources and adjusting predecessors and successors of each activity. In conclusion, two alternatives compared, available outcome presents, and future work suggested for the project team to continue this effort.
Control and Automation of a Heat Shrink Tubing Process
Heat shrink tubing is used to insulate wire conductors, protect wires, and to create cable entry seals in wire harnessing industries. Performing this sensitive process manually is time consuming, the results are strongly dependent on the operator’s expertise, and the process presents safety concerns. Alternatively, automating the process minimizes the operators’ direct interaction, decreases the production cost over the long term, and improves quantitative and qualitative production indicators dramatically. This thesis introduces the automation of a heat shrink tubing prototype machine that benefits the wire harnessing industry. The prototype consists of an instrumented heat chamber on a linear positioning system, and is fitted with two heat guns. The chamber design allows for the directing of hot air from the heat guns onto the wire harness uniformly through radially-distributed channels. The linear positioning system is designed to move the heat chamber along the wire harness as the proper shrinkage temperature level is reached. Heat exposure time as a major factor in the heat shrink tubing process can be governed by controlling the linear speed of the heat chamber. A control unit manages the actuator position continuously by measuring the chamber’s speed and temperature. A model-based design approach is followed to design and test the controller, and MATLAB/Simulink is used as the simulation environment. A programmable logic controller is selected as the controller implementation platform. The control unit performance is examined and its responses follow the simulation results with adequate accuracy.
Corrosion Protection of Low Carbon Steel By Cation Substituted Magnetite
Surfaces of low carbon steel sheet were modified by exposure to highly caustic aqueous solutions containing either chromium or aluminum cations. Corrosion resistances of such surfaces were compared with that of steel surfaces exposed to plain caustic aqueous solution. In all cases a highly uniform, black coating having a spinel structure similar to magnetite (Fe3O4) was obtained. The coated steel surfaces were characterized using X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), and Fourier transform infrared spectrophotometry (FTIR). Polarization resistances (Rp) of modified steel surfaces were measured and compared with that of bare steel surfaces. Results indicate that chromium (Fe2+ Fe3+x Cr3+1-x) or aluminum (Fe2+ Fe3+x Al3+1-x) substituted spinel phases formed on steel surfaces showed higher Rp values compared to only magnetite (Fe2+ 2Fe3+O4) phase formed in the absence of either chromium or aluminum cations. Average Rp values for steel surfaces with chromium containing spinel phase were much higher (21.8 k?) as compared to 1.7 k? for bare steel surfaces. Steel surfaces with aluminum containing spinel phase and steels with plain magnetite coated samples showed average Rp values of 3.3 k? and 2.5 k? respectively. XPS and EDS analysis confirmed presence of cations of chromium and aluminum in Fe3O4 in cation substituted samples. FTIR results showed all coating phases were of spinel form with major absorption bands centered at either 570 cm-1 or 600 cm-1 assigned to Fe3O4 and ?-Fe2O3 respectively.
The Design and Development of Lightweight Composite Wall, Roof, and Floor Panels for Rigid Wall Shelter
This thesis presents a research effort aimed at developing a stronger, lighter, and more economic shelter using rigid wall panels. Reported herein is insulation research, wall and roof panel design and testing, floor section modeling and strength calculations, and cost and weight calculations. Beginning stages focus on developing solid wall and roof panels using cold-formed steel corrugated sheathing and members, as well as polyurethane spray foam for insulation. This research includes calculating uniform load density, to determine the overall strength of the panel. The next stage focuses on the flexural strength of the wall and roof panels, as well as finalizing the floor design for the shelter. This includes determining maximum flexural strength required to meet the standards set by the project goal. Direct strength method determined the correct thickness of members to use based on the dimension selected for the design. All Phases incorporated different connection methods, with varied stud spacing, to determine the safest design for the new shelters. Previous research has shown that cold-formed steel corrugated sheathing performs better than thicker flat sheathing of various construction materials, with screw and spot weld connections. Full scale shear wall tests on this type of shear wall system have been conducted, and it was found that the corrugated sheathing had rigid board behavior before it failed in shear buckling in sheathing and sometimes simultaneously in screw connection failures. Another aspect of the research is on the insulation of the wall panels. Research was conducted on many different insulation options for the mobile facilities. Specifically, insulation made of lightweight material, is non-combustible, added rigidity to the structure, and has high thermal properties. Closed cell polyurethane spray foam was selected for full-scale testing in this research. Closed cell polyurethane adds extra rigidity, is lighter than common honeycomb insulation, and has a higher …
Design Method of Cold-Formed Steel Framed Shear Wall Sheathed by Structural Concrete Panel
The objective of this research is developing a new method of design for cold-formed steel framed shear wall sheathed by ¾" thick USG structural panel concrete subfloor using a predictive analytical model and comparing the results obtained from the model with those achieved from real testing to verify the analytical model and predicted lateral load-carrying capacity resulted from that. Moreover, investigating the impact of various screw spacings on shear wall design parameter such as ultimate strength, yield strength, elastic stiffness, ductility ratio and amount of energy dissipation is another purpose of this research.
Design, Modeling, and Experiment of a Piezoelectric Pressure Sensor based on a Thickness-Shear Mode Crystal Resonator
This thesis presents the design, modeling, and experiment of a novel pressure sensor using a dual-mode AT-cut quartz crystal resonator with beat frequency analysis based temperature compensation technique. The proposed sensor can measure pressure and temperature simultaneously by a single AT-cut quartz resonator. Apart from AT-cut quartz crystal, a newly developed Langasite (LGS) crystal resonator is also considered in the proposed pressure sensor design, since LGS can operate in a higher temperature environment than AT-cut quartz crystal. The pressure sensor is designed using CAD (computer aided design) software and CAE software - COMSOL Multiphysics. Finite element analysis (FEA) of the pressure sensor is performed to analyze the stress- strain of the sensor's mechanical structure. A 3D printing prototype of the sensor is fabricated and the proposed sensing principle is verified using a force-frequency analysis apparatus. Next to the 3D printing model verification, the pressure sensor with stainless steel housing has been fabricated with inbuilt crystal oscillator circuit. The oscillator circuit is used to excite the piezo crystal resonator at its fundamental vibrational mode and give the frequency as an output signal. Based on the FEA and experimental results, it has been concluded that the maximum pressure that the sensor can measure is 45 (psi). The pressure test results performed on the stainless steel product shows a highly linear relationship between the input (pressure) and the output (frequency).
Design of a Machine Condition Monitoring System with Bluetooth Low Energy
This thesis discusses the design considerations for a machine conditioning sensor utilizing Bluetooth low energy (BLE).
Development and Test of High-Temperature Piezoelectric Wafer Active Sensors for Structural Health Monitoring
High-temperature piezoelectric wafer active sensors (HT-PWAS) have been developed for structure health monitoring at hazard environments for decades. Different candidates have previously been tested under 270 °C and a new piezoelectric material langasite (LGS) was chosen here for a pilot study up to 700 °C. A preliminary study was performed to develop a high temperature sensor that utilizes langasite material. The Electromechanical impedance (E/M) method was chosen to detect the piezoelectric property. Experiments that verify the basic piezoelectric property of LGS at high temperature environments were carried out. Further validations were conducted by testing structures with attached LGS sensors at elevated temperature. Additionally, a detection system simulating the working process of LGS monitoring system was developed with PZT material at room temperature. This thesis, for the first time, (to the best of author’s knowledge) presents that langasite is ideal for making piezoelectric wafer active sensors for high temperature structure health monitoring applications.
Direct Immersion Cooling Via Nucleate Boiling of HFE-7100 Dielectric Liquid on Hydrophobic and Hydrophilic Surfaces
This study experimentally investigated the effect of hydrophobic and hydrophilic surfaces characteristics on nucleate boiling heat transfer performance for the application of direct immersion cooling of electronics. A dielectric liquid, HFE – 7100 was used as the working fluid in the saturated boiling tests. Twelve types of 1-cm2 copper heater samples, simulating high heat flux components, featured reference smooth copper surface, fully and patterned hydrophobic surface and fully and patterned hydrophilic surfaces. Hydrophobic samples were prepared by applying a thin Teflon coating following photolithography techniques, while the hydrophilic TiO2 thin films were made through a two step approach involving layer by layer self assembly and liquid phase deposition processes. Patterned surfaces had circular dots with sizes between 40 – 250 μm. Based on additional data, both hydrophobic and hydrophilic surfaces improved nucleate boiling performance that is evaluated in terms of boiling incipience, heat transfer coefficient and critical heat flux (CHF) level. The best results, considering the smooth copper surface as the reference, were achieved by the surfaces that have a mixture of hydrophobic/hydrophilic coatings, providing: (a) early transition to boiling regime and with eliminated temperature overshoot phenomena at boiling incipience, (b) up to 58.5% higher heat transfer coefficients, and (c) up to 47.4% higher CHF levels. The studied enhanced surfaces therefore demonstrated a practical surface modification method for heat transfer enhancement in immersion cooling applications.
Direct Strength Method for Web Crippling of Cold-formed Steel C-sections
Web crippling is a form of localized buckling that occurs at points of transverse concentrated loading or supports of thin-walled structural members. The theoretical computation of web crippling strength is quite complex as it involves a large number of factors such as initial imperfections, local yielding at load application and instability of web. The existing design provision in North American specification for cold-formed steel C-sections (AISI S100, 2007) to calculate the web-crippling strength is based on the experimental investigation. The objective of this research is to extend the direct strength method to the web crippling strength of cold-formed steel C-sections. ABAQUS is used as a main tool to apply finite element analysis and is used to do the elastic buckling analysis. The work was carried out on C-sections under interior two flange (ITF) loading, end two flange (ETF) loading cases. Total of 128 (58 ITF, 70 ETF) sections were analyzed. Sections with various heights (3.5 in.to 6 in.) and various lengths (21 in. to 36 in.) were considered. Data is collected from the tests conducted in laboratory and the data from the previous researches is used, to extend the direct strength method to cold formed steel sections. Proposing a new design for both the loading cases and calculation of the resistance factors under (AISI S100, 2007) standards is done.
Drive Level Dependence of Advanced Piezoelectric Resonators
Resonators are one of the most important parts of electronic products. They provide a stable reference frequency to ensure the operation of these products. Recently, the electronic products have the trend of miniaturization, which rendered the size reduction of the resonators as well [1]. Better design of the resonators relies on a better understanding of the crystals' nonlinear behavior [2]. The nonlinearities affect the quality factor and acoustic behavior of MEMS (Micro-Electro-Mechanical-System) and nano-structured resonators and filters [3]. Among these nonlinear effects, Drivel Level Dependence (DLD), which describes the instability of the resonator frequency due to voltage level and/or power density, is an urgent problem for miniaturized resonators [2]. Langasite and GaPO4 are new promising piezoelectric material. Resonators made from these new materials have superior performance such as good frequency-temperature characteristics, and low acoustic loss [2]. In this thesis, experimental measurements of drive level dependence of langasite resonators with different configurations (plano-plano, single bevel, and double bevel) are reported. The drive level dependence of GaPO4 resonators are reported as well for the purpose of comparison. The results show that the resonator configuration affects the DLD of the langasite resonator. Experiments for DLD at elevated temperature are also performed, and it was found that the temperature also affects the DLD of the langasite resonator.
Dynamic Behaviors of Historical Wrought Iron Truss Bridges – a Field Testing Case Study
Civil infrastructure throughout the world serves as main arteries for commerce and transportation, commonly forming the backbone of many societies. Bridges have been and remain a crucial part of the success of these civil networks. However, the crucial elements have been built over centuries and have been subject to generations of use. Many current bridges have outlived their intended service life or have been retrofitted to carry additional loads over their original design. A large number of these historic bridges are still in everyday use and their condition needs to be monitored for public safety. Transportation infrastructure authorities have implemented various inspection and management programs throughout the world, mainly visual inspections. However, careful visual inspections can provide valuable information but it has limitations in that it provides no actual stress-strain information to determine structural soundness. Structural Health Monitoring (SHM) has been a growing area of research as officials need to asses and triage the aging infrastructure with methods that provide measurable response information to determine the health of the structure. A rapid improvement in technology has allowed researchers to start using new sensors and algorithms to understand the structural parameters of tested structures due to known and unknown loading scenarios. One of the most promising methods involves the use of wireless sensor nodes to measure structural responses to loads in real time. The structural responses can be processed to help understand the modal parameters, determine the health of the structure, and potentially identify damage. For example, modal parameters of structures are typically used when designing the lateral system of a structure. A better understanding of these parameters can lead to better and more efficient designs. Usually engineers rely on a finite element analysis to identify these parameters. By observing the actual parameters displayed during field testing, the theoretical FE models …
Effect of Polyphosphoric Acid on Aging Characteristics of PG 64-22 Asphalt Binder
This research presents the results on an experimental investigation to identify the effect of polyphosphoric acid (PPA) on aging characteristics of an asphalt binder. Addition of PPA to asphalt binders is said to improve performance of flexible pavements. Asphalt binder PG 64-22 in modified and unmodified conditions was subjected to aging in the laboratory using a regular oven and also simulated short term aging using rolling thin film oven (RTFO) test. Aging experiments were conducted to analyze the extent of oxidation in terms of changes in molecular structure of the asphalt binder. These changes were appraised using Fourier transform infrared (FTIR) spectroscopy, dynamic shear rheometer (DSR), and epifluorescence microscopy tests. FTIR was used to determine the changes in major bands with addition of PPA. Stiffness and viscoelastic behaviors of asphalts were determined from the DSR test. The stiffness is measured by calculating the shear modulus, G* and the viscoelastic behavior is measured by calculating the phase angle, sin δ. Epifluorescence microscopy is a tool used to study properties of organic or inorganic substances. The morphological characteristics of PPA modified asphalt samples were observed through epifluorescence microscopy. Epifluorescence microscopy reveals the polymer phase distribution in the asphalt binders. Results of this investigation show PPA addition to asphalt binders improve G*/sin δ characteristics of asphalt binders. In addition, presence of PPA in polymer containing asphalt did not adversely affect aging of the binders.
Effects of Minimum Quantity Lubrication (Mql) on Tool Life in Drilling Aisi 1018 Steel
It has been reported that minimum quantity lubrication (MQL) provides better tool life compared to flood cooling under some drilling conditions. In this study, I evaluate the performance of uncoated HSS twist drill when machining AISI 1018 steel using a newly developed lubricant designed for MQL (EQO-Kut 718 by QualiChem Inc.). A randomized factorial design was used in the experiment. The results show that a tool life of 1110 holes with a corresponding flank wear of 0.058 mm was realized.
Effects of Processing Techniques on Mechanical Properties of Selected Polymers
The mechanical properties of a polymer represent the critical characteristics to be considered when determining the applications for it. The same polymer processed with different methods can exhibit different mechanical properties. The purpose of this study is to investigate the difference in mechanical properties of the selected polymers caused by different processing techniques and conditions. Three polymers were studied, including low density polyethylene (LDPE), polypropylene (PP), and NEXPRENE® 1287A. Samples were processed with injection molding and compression molding under different processing condition. Tensile and DMA tests were performed on these samples. The acquired data of strain at break from the tensile tests and storage modulus from the DMA were utilized to calculate brittleness. Calculated brittleness values were used to perform analysis of variance (ANOVA) to investigate the statistical significance of the processing technique and condition. It was found that different processing techniques affect the brittleness significantly. The processing technique is the major factor affecting brittleness of PP and NEXPRENE, and the processing temperature is the major factor affecting brittleness of LDPE.
Effects of Rebar Temperature and Water to Cement Ratio on Rebar-Concrete Bond Strength of Concrete Containing Fly Ash
This research presents the results on an experimental investigation to identify the effects of rebar temperature, fly ash and water to cement ratio on concrete porosity in continuously reinforced concrete pavements (CRCP). Samples were cast and analyzed using pullout tests. Water to cement ratio (w/c) and rebar temperature had a significant influence on the rebar-concrete bond strength. The 28-day shear strength measurements showed an increase in rebar-concrete bond strength as the water to cement ratio (w/c) was reduced from 0.50 to 0.40 for both fly ash containing and non fly ash control samples. There was a reduction in the peak pullout load as the rebar surface temperature increased from 77o F to 150o F for the cast samples. A heated rebar experiment was performed simulating a rebar exposed to hot summer days and the rebar cooling curves were plotted for the rebar temperatures of 180o F - 120o F. Fourier transform infrared spectroscopy was performed to show the moisture content of cement samples at the rebar-concrete interface. Mercury intrusion porosimetry test results on one batch of samples were used for pore size distribution analysis. An in-depth analysis of the morphological characteristics of the rebar-concrete interface and the observation of pores using the scanning electron microscope (SEM) was done.
Energy Harvesting Wireless Piezoelectric Resonant Force Sensor
The piezoelectric energy harvester has become a new powering option for some low-power electronic devices such as MEMS (Micro Electrical Mechanical System) sensors. Piezoelectric materials can collect the ambient vibrations energy and convert it to electrical energy. This thesis is intended to demonstrate the behavior of a piezoelectric energy harvester system at elevated temperature from room temperature up to 82°C, and compares the system’s performance using different piezoelectric materials. The systems are structured with a Lead Magnesium Niobate-Lead Titanate (PMN-PT) single crystal patch bonded to an aluminum cantilever beam, Lead Indium Niobate-Lead Magnesium Niobate-Lead Titanate (PIN-PMN-PT) single crystal patch bonded to an aluminum cantilever beam and a bimorph cantilever beam which is made of Lead Zirconate Titanate (PZT). The results of this experimental study show the effects of the temperature on the operation frequency and output power of the piezoelectric energy harvesting system. The harvested electrical energy has been stored in storage circuits including a battery. Then, the stored energy has been used to power up the other part of the system, a wireless resonator force sensor, which uses frequency conversion techniques to convert the sensor’s ultrasonic signal to a microwave signal in order to transmit the signal wirelessly.
Fabrication and Testing of Biomimetic Microstructures for Walkway Tribometers
The main objective of this work is to give contribution in both additive manufacturing (AM) and tribometry derived from the application and study of materials available with the use of biomimetic designs. Additional contributions are determining what effects treatments for flooring surfaces may have on the dynamic coefficient of friction and the effects of these products on common surfaces. The validity of the proposed methodology for a proof of concept was demonstrated by comparing measured dynamic coefficient of friction for designs using standardized equipment and comparing these values to plantar skin tested using an accepted and standardized testing method that has been extensively researched and validated. Initial biomimetic designs and characteristics unique to each design were researched and compared. Eleven designs were selected to be fabricated, tested, and compared to select the most desirable applications for further investigation. Research into potential treatments commercially available for use was done to determine the efficacy of these products. Prototype sensor designs were selected and fabricated using direct light processing (DLP) technology. Examination of the measured values was done through an analysis of the variances in the response variable and comparisons using Fisher and Tukey pairwise comparison method. Future work recommendations are provided for further development and improvement of the topics presented in this thesis.
Guidelines for Greening (Renovation) of Existing Homes
This Thesis is aimed at evaluating the options of renovation for an existing residential building to make it more energy efficient. The various aspects in the basic structures of residential homes are discussed in order to help the user identify the areas of the house for which renovation is required to improve the energy efficiency of the building. These aspects include doors, roof and wall in addition to various systems of electrical wiring, mechanical systems of ventilation, heating and cooling and plumbing systems for the efficient flow of water throughout the house. The renovation options have been described in detail to provide as many possibilities to the user as possible. The building taken for renovation is a 1953 suburban home which has been awarded the honor of being the first building to be labeled as Zero Energy Home in its vicinity. This has made the home so efficient that its expenditure of energy has become equivalent to its energy generation, therefore, cancelling each other out and creating an estimate of zero energy.
Hydrophobicity of Magnetite Coating on Low Carbon Steel
Superhydrophobic coatings (SHC) with excellent self-cleaning and corrosion resistance property is developed on magnetite coated AISI SAE 1020 steel by using a simple immersion method. Roughness measurement, scanning electron microscopy (SEM), atomic force microscopy (AFM), X-ray diffraction (XRD), contact angle measurement (CAM), energy dispersive spectroscopy (EDS), Fourier transform infrared spectroscopy (FTIR), potentiodynamic polarization test, electrochemical impedance spectroscopy (EIS), and qualitative characterization of self-cleaning behavior, antifouling property and durability of the coatings are assessed. A water contact angle as high as 152o on the coated surface with excellent self-cleaning and resistivity to corrosion and good longevity in atmospheric air is obtained. Self-cleaning test results prove that these surfaces can find applications in large scale production of engineering materials. Potentiodynamic polarization tests and EIS tests confirm that the superhydrophobic low carbon steel surfaces have better resistance to corrosion compared to bare steel and magnetite coated steel in 3.5% NaCl solution. But the longevity of the coated steel surfaces in 3.5% salt solution is limited, which is revealed by the immersion durability test. However, hydrophobic coatings (HC) have better stability in normal tap water, and it can stay unharmed up to 15 days. Finally, hydrophobic coatings on low carbon steel surface retains hydrophobic in open atmosphere for more than two months. Results of this investigation show surface roughness is a critical factor in manufacturing hydrophobic steel surfaces. Higher contact angles are obtained for rougher and more uniform surfaces. A linear mathematical relationship (y =6x+104; R2 = 0.93) is obtained between contact angle (y) and surface roughness (x).
Impact of Green Design and Technology on Building Environment
Currently, the public has a strong sense of the need for environment protection and the use of sustainable, or “green,” design in buildings and other civil structures. Since green design elements and technologies are different from traditional design, they probably have impacts on the building environment, such as vibration, lighting, noise, temperature, relative humidity, and overall comfort. Determining these impacts of green design on building environments is the primary objective of this study. The Zero Energy Research (ZOE) laboratory, located at the University of North Texas Discovery Park, is analyzed as a case study. Because the ZOE lab is a building that combines various green design elements and energy efficient technologies, such as solar panels, a geothermal heating system, and wind turbines, it provides an ideal case to study. Through field measurements and a questionnaire survey of regular occupants of the ZOE lab, this thesis analyzed and reported: 1) whether green design elements changed the building’s ability to meet common building environmental standards, 2) whether green design elements assisted in Leadership in Energy and Environmental Design (LEED) scoring, and 3) whether green design elements decreased the subjective comfort level of the occupants.
Innovative Cold-Formed Steel Shear Walls with Corrugated Steel Sheathing
This thesis presents two major sections with the objective of introducing a new cold-formed steel (CFS) shear wall system with corrugated steel sheathings. The work shown herein includes the development of an optimal shear wall system as well as an optimal slit configuration for the CFS corrugated sheathings which result in a CFS shear wall with high ductility, high strength, high stiffness and overall high performance. The conclusion is based on the results of 36 full-scale shear wall tests performed in the structural laboratory of the University of North Texas. A variety of shear walls were the subject of this research to make further discussions and conclusions based on different sheathing materials, slit configurations, wall configurations, sheathing connection methods, wall dimensions, shear wall member thicknesses, and etc. The walls were subject to cyclic (CUREE protocol) lateral loading to study their deformations and structural performances. The optimal sit configuration for CFS shear walls with corrugated steel sheathings was found to be 12×2 in. vertical slits in 6 rows. The failure mode observed in this shear wall system was the connection failure between the sheathing and the framing members. Also, most of the shear walls tested displayed local buckling of the chord framing members located above the hold-down locations. The second section includes details of developing a Finite Element Model (FEM) in ABAQUS software to analyze the lateral response of the new shear wall systems. Different modeling techniques were used to define each element of the CFS shear wall and are reported herein. Material properties from coupon test results are applied. Connection tests are performed to define pinching paths to model fasteners with hysteretic user-defined elements. Element interactions, boundary conditions and loading applications are consistent with full scale tests. CFS members and corrugated sheathings are modeled with shell elements, sheathing-to-frame fasteners are …
Investigation of Immersion Cooled ARM-Based Computer Clusters for Low-Cost, High-Performance Computing
This study aimed to investigate performance of ARM-based computer clusters using two-phase immersion cooling approach, and demonstrate its potential benefits over the air-based natural and forced convection approaches. ARM-based clusters were created using Raspberry Pi model 2 and 3, a commodity-level, single-board computer. Immersion cooling mode utilized two types of dielectric liquids, HFE-7000 and HFE-7100. Experiments involved running benchmarking tests Sysbench high performance linpack (HPL), and the combination of both in order to quantify the key parameters of device junction temperature, frequency, execution time, computing performance, and energy consumption. Results indicated that the device core temperature has direct effects on the computing performance and energy consumption. In the reference, natural convection cooling mode, as the temperature raised, the cluster started to decease its operating frequency to save the internal cores from damage. This resulted in decline of computing performance and increase of execution time, further leading to increase of energy consumption. In more extreme cases, performance of the cluster dropped by 4X, while the energy consumption increased by 220%. This study therefore demonstrated that two-phase immersion cooling method with its near-isothermal, high heat transfer capability would enable fast, energy efficient, and reliable operation, particularly benefiting high performance computing applications where conventional air-based cooling methods would fail.
Investigation of Spray Cooling Schemes for Dynamic Thermal Management
This study aims to investigate variable flow and intermittent flow spray cooling characteristics for efficiency improvement in active two-phase thermal management systems. Variable flow spray cooling scheme requires control of pump input voltage (or speed), while intermittent flow spray cooling scheme requires control of solenoid valve duty cycle and frequency. Several testing scenarios representing dynamic heat load conditions are implemented to characterize the overall performance of variable flow and intermittent flow spray cooling cases in comparison with the reference, steady flow spray cooling case with constant flowrate, continuous spray cooling. Tests are conducted on a small-scale, closed loop spray cooling system featuring a pressure atomized spray nozzle. HFE-7100 dielectric liquid is selected as the working fluid. Two types of test samples are prepared on 10 mm x 10 mm x 2 mm copper substrates with matching size thick film resistors attached onto the opposite side, to generate heat and simulate high heat flux electronic devices. The test samples include: (i) plain, smooth surface, and (ii) microporous surface featuring 100 μm thick copper-based coating prepared by dual stage electroplating technique. Experimental conditions involve HFE-7100 at atmospheric pressure and 30°C and ~10°C subcooling. Steady flow spray cooling tests are conducted at flow rates of 2 - 5 ml/cm².s, by controlling the heat flux in increasing steps, and recording the corresponding steady-state temperatures to obtain cooling curves in the form of surface superheat vs. heat flux. Variable flow and intermittent flow spray cooling tests are done at selected flowrate and subcooling conditions to investigate the effects of dynamic flow conditions on maintaining the target surface temperatures defined based on reference steady flow spray cooling performance.
Knowledge Based System and Decision Making Methodologies in Materials Selection for Aircraft Cabin Metallic Structures
Materials selection processes have been the most important aspects in product design and development. Knowledge-based system (KBS) and some of the methodologies used in the materials selection for the design of aircraft cabin metallic structures are discussed. Overall aircraft weight reduction means substantially less fuel consumption. Part of the solution to this problem is to find a way to reduce overall weight of metallic structures inside the cabin. Among various methodologies of materials selection using Multi Criterion Decision Making (MCDM) techniques, a few of them are demonstrated with examples and the results are compared with those obtained using Ashby's approach in materials selection. Pre-defined constraint values, mainly mechanical properties, are employed as relevant attributes in the process. Aluminum alloys with high strength-to-weight ratio have been second-to-none in most of the aircraft parts manufacturing. Magnesium alloys that are much lighter in weight as alternatives to the Al-alloys currently in use in the structures are tested using the methodologies and ranked results are compared. Each material attribute considered in the design are categorized as benefit and non-benefit attribute. Using Ashby's approach, material indices that are required to be maximized for an optimum performance are determined, and materials are ranked based on the average of consolidated indices ranking. Ranking results are compared for any disparity among the methodologies.
The Measurement of the Third-order Elastic Constants for La3ga5sio14 (Lgs) and La3ga55ta05o14 (Lgt) Single Crystal
Recently, the development of electronic technology towards higher frequencies and larger band widths has led to interest in finding new piezoelectric materials, which could be used to make filters with larger pass band widths and oscillators with better frequency stability. Langasite (La3Ga5SiO14, LGS) and its isomorphs have enticed considerable attention of researchers as a potential substrate material for piezoelectric device applications because of its high frequency stability and fairly good electromechanical coupling factors for acoustic wave devices. Nonlinear effect including drive level dependence, mode coupling, force-frequency effect and electroelasic effect are critical for the design of these devices. Third-order elastic constants (TOEC) play an important role in a quantitative analysis of these nonlinear effects. In particular these elastic constants are of great importance when the BAW (Bulk Acoustic Wave) and SAW (Surface Acoustic Wave) sensors of force, acceleration and so on are designed. Until now Langasite (LGS) and Langatate (LGT) crystal resonators have been qualified in terms of quality factor, temperature effect, isochronism defect and material quality. One of the most important advantages of those crystals is that they will not undergo phase transitions up to its melting temperature of 1450°. Presently there is no data on TOEC of LGT crystals. Our objective is to create an experimental procedure to measure and collect the complete set of third-order elastic constants of Langasite (La3Ga5SiO14) and Langatate (La3Ga5.5Ta0.5O14) crystals and compare the new values for langasite with values previously reported.
Mechanical Characterization of A2 and D2 Tool Steels By Nanoindentation
Nanoindentation technique was used to investigate the surface properties of A2 and D2 tool steel subjected to different heat treatments. the mechanical characteristics of these two easily available tool steels were studied based on microstructural images obtained from SEM, the grain growth after heat treatment using X-ray diffraction method and nanoindentation technique. the investigation showed that a single nanoindentation result can explain how heat treatment influences reliability and failure in A2 and D2 tool steels. in this work, the causes and effects of these variations were studied to explain how they influence reliability and failure in A2 and D2 tool steel. Finally, a cube-corner indenter tip was used to determine the fracture toughness of silicon wafer. the emphasis of this research is on how nanoindentation technique is more extensive in material characterization.
Microfluidic-Based Fabrication of Photonic Microlasers for Biomedical Applications
Optical microlasers have been used in different engineering fields and for sensing various applications. They have been used in biomedical fields in applications such as for detecting protein biomarkers for cancer and for measuring biomechanical properties. The goal of this work is to propose a microfluidic-based fabrication method for fabricating optical polymer based microlasers, which has advantages, over current methods, such us the fabrication time, the contained cost, and the reproducibility of the microlaser's size. The microfluidic setup consisted of microfluidic pumps and a flow focusing droplet generator chip made of polydimethylsiloxane (PDMS). Parameters such as the flow rate (Q) and the pressure (P) of both continuous and dispersed phases are taken into account for determining the microlaser's size and a MATLAB imaging tool is used to reduce the microlaser's diameter estimation. In addition, two applications are discussed: i) electric field measurements via resonator doped with Di-Anepps-4 voltage sensitive dye, and ii) strain measurements in a 3D printed bone-like structure to mimic biomedical implantable sensors.
Mist Characterization in Drilling 1018 Steel
Minimum quantity lubrication replaces the traditional method of flood cooling with small amounts of high-efficient lubrication. Limited studies have been performed to determine the characteristics of mist produced during MQL. This study investigated the mist concentration levels produced while drilling 1018 steel using a vegetable based lubricant. ANOVA was performed to determine whether speed and feed rates or their interactions have a significant effect on mist concentration levels and particle diameter. It was observed that the concentration levels obtained under all four speed and feed rate combinations studied exceeded the current OSHA and NIOSH standards.
Nominal Shear Strength and Seismic Detailing of Cold-formed Steel Shear Walls using Steel Sheet Sheathing
In this research, monotonic and cyclic tests on cold-formed steel shear walls sheathed with steel sheets on one side were conducted to (1) verify the published nominal shear strength for 18-mil and 27-mil steel sheets; and (2) investigate the behavior of 6-ft. wide shear walls with multiple steel sheets. In objective 1: this research confirms the discrepancy existed in the published nominal strength of 27-mil sheets discovered by the previous project and verified the published nominal strength of 18 mil sheet for the wind design in AISI S213. The project also finds disagreement on the nominal strength of 18-mil sheets for seismic design, which is 29.0% higher than the published values. The research investigated 6-ft. wide shear wall with four framing and sheathing configurations. Configuration C, which used detailing, could provide the highest shear strength, compared to Configurations A and B. Meanwhile, the shear strength and stiffness of 2-ft. wide and 4-ft. wide wall can be improved by using the seismic detailing.
Nominal Shear Strength of Cold-formed Steel Shear Walls Using Osb Sheathing
In the cold-formed steel construction, the oriented strand board is a common material for shear wall sheathing. an OSB is made by using wood chips as raw materials that undergo high temperature pressing to create a multi-larger structure material. Due to the OSB having a high strength in shear, it is an important material used in the construction field. the thesis is trying to verify published nominal shear strength in AISI-213-07 in the first part. This objective has two parts: the first part is to verify nominal shear strength (Rn) for wind and other in-plane loads for shear wall. the second part is to verify nominal shear strength (Rn) for seismic and other in-plane loads for shear wall. Secondly, the thesis verifies the design deflection equation for nominal shear strength of CFS shear walls with OSB sheathing. the test specimens were divided into eight groups which trying to verify the design deflection equation that was published in AISI-213-07 standard.
Ota-quadrotor: An Object-tracking Autonomous Quadrotor for Real-time Detection and Recognition
The field of robotics and mechatronics is advancing at an ever-increasing rate and we are starting to see robots making the transition from the factories to the workplace and homes as cost is reduced and they become more useful. In recent years quadrotors have become a popular unmanned air vehicle (UAV) platform. These UAVs or micro air vehicles (MAV) are being used for many new and exciting applications such as aerial monitoring of wildlife, disaster sites, riots and protests. They are also being used in the film industry, as they are significantly cheaper means of getting aerial footage. While quadrotors are not extremely expensive a good system can cost in the range of $3000 - $8000 and thus too costly as a research platform for many. There are a number of cheaper open source platforms. The ArduCopter is under constant development, has the largest community and is inexpensive making it an ideal platform to work with. The goal of this thesis was to implement video processing on a ground control station allowing for the ArduCopter to track moving objects. This was achieved by using the OpenCV video-processing library to implement object tracking and the MAVLink communication protocol, available on the ArduCopter platform, for communication.
Recommended Modified zone Method Correction Factor for Determining R-values of Cold-Formed Steel Wall Assemblies
Currently, ASHRAE has determined the zone method and modified zone method are appropriate calculation methods for materials with a high difference in conductivity, such as cold-formed steel (CFS) walls. Because there is currently no standard U-Factor calculation method for CFS walls, designers and code officials alike tend to resort to the zone method. However, the zone method is restricted to larger span assemblies because the zone factor coefficient is 2.0. This tends to overestimate the amount of surface area influenced by CFS. The modified zone method is restricted to C-shaped stud, clear wall assemblies with framing factors between 9 and 15%. The objective of the research is to narrow the gap of knowledge by re-examining the modified zone method in order to more accurately determine R-Values and U-Factors for CFS wall assemblies with whole wall framing factor percentages of 22% and above.
Seismic Performance Evaluation of Novel Cold-Formed Steel Framed Shear Walls Sheathed with Corrugated Steel Sheets
This thesis presents experiments and numerical analysis of a novel cold-formed steel framed shear wall sheathed with corrugated steel sheets. The objective of this newly designed shear wall is to meet the growing demand of mid-rise buildings and the combustibility requirement in the International Building Code. The strength of the novel shear wall is higher than currently code certified shear wall in AISI S400-15 so that it could be more favorable for mid-rise building in areas that are prone to earthquakes and hurricanes. Full-scale monotonic and cyclic tests were conducted on bearing walls and shear walls under combined lateral and gravity loads. Though the gravity loads had negative effects on the strength and stiffness of the shear wall due to the buckling of the chord framing members, it still shows promise to be used in mid-rise buildings. The objective of numerical analysis is to quantify the seismic performance factors of the newly design shear wall lateral-force resisting system by using the recommended methodology in FEMA P695. Two groups of building archetypes, story varied from two to five, were simulated in OpenSees program. Nonlinear static and dynamic analysis were performed in both horizontal directions of each building archetype. Finally, the results of the performance evaluation verified the seismic performance factors(R=Cd=6.5 and Ω =3.0) were appropriate for the novel shear wall system.
Shear and Bending Strength of Cold-Formed Steel Solid Wall Panels Using Corrugated Steel Sheets for Mobile Shelters
The objective of this thesis is to determine if the single sided resistance spot weld (RSW) can be used as a feasible connection method for cold formed steel (CFS) shear walls subject to lateral force of either seismic or wind loads on mobile shelters. The research consisted of three phases which include: a design as a 3D BIM model, connection tests of the resistance spot weld, and full-scale testing of the designed solid wall panels. The shear wall testing was conducted on specimens with both resistance spot weld and self-drilling screws and the results from tests gave a direct comparison of these connections when the solid wall panel was subjected to in-plane shear forces. The full-scale tests also included 4-point bending tests which was designed to investigate the wall panel's resistance to the lateral loads applied perpendicularly to the surface. The research discovered that the singled sided resistance spot weld achieved similar performance as the self-drilling screws in the applications of CFS wall panels for mobile shelters. The proposed single sided resistance spot weld has advantages of low cost, no added weight, fast fabrication, and it is a feasible connection method for CFS wall panels.
Shear and Compression Strength of Cold-formed Steel Clip Angles Subjected to Different Screw Patterns
This thesis presents experiments and numerical analysis of the cold-formed steel clip angle in three different limit states which are shear, compression, and combination of the screw connection. A previous cold-formed steel clip angle test program (which is Phase 1) developed design methods for clip angle. Therefore, the object of this thesis is to further investigate the behavior and design methods of loading-bearing cold-formed steel clip angles under different screw pattern. For each limit state, a test program was conducted to investigate the behavior, strength, and deflection of the clip angle. The test result were compared with previous CFS clip angle design method. Amending existing CFS clip angle method were developed by each of the four limit states studied in this project.
Software and Hardware-In-The-Loop Modeling of an Audio Watermarking Algorithm
Due to the accelerated growth in digital music distribution, it becomes easy to modify, intercept, and distribute material illegally. To overcome the urgent need for copyright protection against piracy, several audio watermarking schemes have been proposed and implemented. These digital audio watermarking schemes have the purpose of embedding inaudible information within the host file to cover copyright and authentication issues. This thesis proposes an audio watermarking model using MATLAB® and Simulink® software for 1K and 2K fast Fourier transform (FFT) lengths. The watermark insertion process is performed in the frequency domain to guarantee the imperceptibility of the watermark to the human auditory system. Additionally, the proposed audio watermarking model was implemented in a Cyclone® II FPGA device from Altera® using the Altera® DSP Builder tool and MATLAB/Simulink® software. To evaluate the performance of the proposed audio watermarking scheme, effectiveness and fidelity performance tests were conducted for the proposed software and hardware-in-the-loop based audio watermarking model.
Spray Cooling with HFC-134a and HFO-1234yf for Thermal Management of Automotive Power Electronics
This study aims to experimentally investigate the spray cooling characteristics for active two-phase cooling of automotive power electronics. Tests are conducted on a small-scale, closed loop spray cooling system featuring a pressure atomized spray nozzle. Two types of refrigerants, HFC-134a (R-134a) and HFO-1234yf, are selected as the working fluids. The test section (heater), made out of oxygen-free copper, has a 1-cm2 plain, smooth surface prepared following a consistent procedure, and would serve as a baseline case. Matching size thick film resistors, attached onto the copper heaters, generate heat and simulate high heat flux power electronics devices. The tests are conducted by controlling the heat flux in increasing steps, and recording the corresponding steady-state temperatures to obtain cooling curves. The working fluid is kept at room temperature level (22oC). Performance comparisons are made based on heat transfer coefficient (HTC) and critical heat flux (CHF) values. Effects of spray characteristics and liquid flow rates on the cooling performance are investigated with the selected coolants. Three types of commercially available nozzles that generate full-cone sprays with fine droplets are utilized in the tests. Effect of liquid flow rate is evaluated varying flow rates at 2, 3, 4 ml/s. The experimental results obtained from this study provide a framework for spray cooling performance with the current and next-generation refrigerants aimed for advanced thermal management of automotive power electronics.
A Study on the System Reliability of Cold-Formed Steel Roof Trusses
This thesis presents a research project aimed at advancing the treatment of cold-formed steel (CFS) structural reliability in roof trusses. Structural design today relies almost exclusively on component-level design, so structural safety is assured by limiting the probability of failure of individual components. Reliability of the entire system is typically not assessed, so in a worst-case scenario the system reliability may be less than the component reliability, or in a best-case scenario the system reliability may be much greater than the component reliability. A roof truss itself, is a subsystem with several possible failure modes that are being studied in this test program. These trusses are constructed of CFS members that nest with one another at the truss nodes and are connected by drilling fasteners through the mated surfaces, as well as having steel sheathing fastened to the top chords for lateral bracing. Presented in this paper is a series of full-scale static tests on single cold-formed steel roof trusses with a unique experimental setup. The test specimens were carefully monitored to address multiple failure modes: buckling of the top chord, buckling of the truss webs, and any connection failures. This research includes the experimental results, the computed system reliability of the trusses as well as their relationship between the components reliability.
Topology and Lattice-Based Structural Design Optimization for Additively Manufactured Medical Implants
Topology-based optimization techniques and lattice structures are powerful ways to accomplish lightweight components with enhanced mechanical performance. Recent developments in additive manufacturing (AM) have led the way to extraordinary opportunities in realizing complex designs that are derived from topology and lattice-based structural optimization. The main aim of this work is to give a contribution, in the integration between structural optimization techniques and AM, by proposing a setup of a proper methodology for rapid development of optimized medical implants addressing oseeointegration and minimization of stress shielding related problems. The validity of the proposed methodology for a proof of concept was demonstrated in two real-world case studies: a tibia intramedullary implant and a shoulder hemi prosthetics for two bone cancer patients. The optimization was achieved using topology optimization and replacement of solid volumes by lattice structures. Samples of three lattice unit cell configurations were designed, fabricated, mechanically tested, and compared to select the most proper configuration for the shoulder hemi prosthesis. Weight reductions of 30% and 15% were achieved from the optimization of the initial design of the tibia intramedullary implant and the shoulder hemiprosthesis respectively compared to initial designs. Prototypes were fabricated using selective laser melting (SLM) and direct light processing (DLP) technologies. Validation analysis was performed using finite element analysis and compressive mechanical testing. Future work recommendations are provided for further development and improvement of the work presented in this thesis.
Two-Phase Spray Cooling with HFC-134a and HFO-1234yf for Thermal Management of Automotive Power Electronics using Practical Enhanced Surfaces
The objective of this research was to investigate the performance of two-phase spray cooling with HFC-134a and HFO-1234yf refrigerants using practical enhanced heat transfer surfaces. Results of the study were expected to provide a quantitative spray cooling performance comparison with working fluids representing the current and next-generation mobile air conditioning refrigerants, and demonstrate the feasibility of this approach as an alternative active cooling technology for the thermal management of high heat flux power electronics (i.e., IGBTs) in electric-drive vehicles. Potential benefits of two-phase spray cooling include achieving more efficient and reliable operation, as well as compact and lightweight system design that would lead to cost reduction. The experimental work involved testing of four different enhanced boiling surfaces in comparison to a plain reference surface, using a commercial pressure-atomizing spray nozzle at a range of liquid flow rates for each refrigerant to determine the spray cooling performance with respect to heat transfer coefficient (HTC) and critical heat flux (CHF). The heater surfaces were prepared using dual-stage electroplating, brush coating, sanding, and particle blasting, all featuring "practical" room temperature processes that do not require specialized equipment. Based on the obtained results, HFC-134a provided a better heat transfer performance through higher HTC and CHF values compared to HFO-1234yf at all tested surfaces and flow rates. While majority of the tested surfaces provided comparable HTC and modestly higher CHF values compared to the reference surface, one of the enhanced surfaces offered significant heat transfer enhancement.
Two-Phase Spray Cooling with Water/2-Propanol Binary Mixtures for High Heat Flux Focal Source
Two-phase spray cooling has been an emerging thermal management technique offering high heat transfer coefficients and critical heat flux levels, near-uniform surface temperatures, and efficient coolant usage that enables to design of compact and lightweight systems. Due to these capabilities, spray cooling is a promising approach for high heat flux applications in computing, power electronics, and optics. Two-phase spray cooling inherently depends on saturation temperature-pressure relationships of the working fluid to take advantage of high heat transfer rates associated with liquid-vapor phase change. When a certain application requires strict temperature and/or pressure conditions, thermo-physical properties of the working fluid play a critical role in attaining proper efficiency, reliability, or packaging structure. However, some of the commonly used single-component working fluids have relatively poor properties and heat transfer performance. For example, water is the best coolant in terms of properties, yet in certain applications where the system operates at low temperature ambient, it cannot be implemented due to freezing risk. The common solution for this problem is to use the antifreeze mixtures (binary mixtures of water and alcohol) to reduce the freezing point. In such cases, utilizing binary mixtures to tune working fluid properties becomes an alternative approach. This study has two main objectives; (1) to experimentally investigate the two-phase spray cooling performance of water/2-propanol binary mixture, and (2) to numerically investigate the performance of an advanced heat spreader featuring high and directional thermal conductivity materials for high heat flux focal sources. The first part of the study involves experimental characterization of heat transfer performance. Tests are conducted on a small-scale, closed loop spray cooling system featuring a pressure atomized spray nozzle. The test section, made of copper, measures 10 mm x 10 mm x 2 mm with a plain, smooth surface. A cylindrical copper block, with a matching size square …
Back to Top of Screen