You limited your search to:

  Partner: UNT Libraries Government Documents Department
 Collection: Technical Report Archive and Image Library
Advanced Test Reactor Turbo Report
From abstract: "The time-dependent behavior of the Advanced Test Reactor was calculated by the Babcock & Wilcox Company on the Philco 2000 computer, using the Turbo depletion program." digital.library.unt.edu/ark:/67531/metadc67313/
Advances in Coal Spectrometry: Absorption Spectrometry
Report from the U.S. Bureau of mines discussing the use of infared and ultraviolet-visible spectrometry to study the structure of coal and coal extracts. digital.library.unt.edu/ark:/67531/metadc12791/
Advantages of oxide films as bases for aluminum pigmented surface coatings for aluminum alloys
Both laboratory and weather-exposure corrosion tests showed conclusively that the protection afforded by aluminum pigmented spar varnish coatings applied to previously anodized aluminum surfaces was greatly superior to that afforded by the same coatings applied to surfaces which had simply been cleaned free from grease and not anodized. digital.library.unt.edu/ark:/67531/metadc54028/
The advantages of uniform fuel distribution for air-cooled engines from considerations of cooling requirements and fuel economy
No Description digital.library.unt.edu/ark:/67531/metadc61935/
AEC Group Shelter
Report regarding the study of an underground group-shelter meant to protect against nuclear blasts, radiation, and fallout. The report presents a design for such a shelter, the minimum requirements that such a shelter should meet, a description of its facilities, illustrations, and an operating manual. digital.library.unt.edu/ark:/67531/metadc13018/
Aerial convention of October 13, 1919
The aerial convention delegates are listed as well as the set of rules that were developed during the session. digital.library.unt.edu/ark:/67531/metadc55281/
Aerial navigation by dead reckoning
The problem to be solved, as presented to the pilot or observer of an aircraft, is as follows: The aircraft starting from A must land at B, the only data being the speed of the airplane, the altitude and the orientation D of the course. The above data would be amply sufficient, were it not for the fact that the airplane is constantly subjected to a wind of variable direction and strength. digital.library.unt.edu/ark:/67531/metadc55696/
Aerial navigation : on the problem of guiding aircraft in a fog or by night when there is no visibility
The use of magnetic fields and wire to navigate aircraft in conditions of poor visibility is presented. This field may be considered to be derived from a double lemniscate, considered in the particular case where the origin is a double point formed from the magnetic field of the slack wire, from the field produced by the return currents and from the field due to the currents induced in the conducting mass. These fields are dephased in two ways, one in the direction of the wire, the other in a direction perpendicular to it. digital.library.unt.edu/ark:/67531/metadc53657/
Aerial photography : obtaining a true perspective
A demonstration was given within the last few days at the British Museum by Mr. J. W. Gordon, author of "Generalized Linear Perspective" (Constable and Co.), a work describing a newly-worked-out system by which photographs can be made available for the purpose of exactly recording the dimensions of the objects photographed even when the objects themselves are presented foreshortened in the photograph. digital.library.unt.edu/ark:/67531/metadc277511/
Aerial Radiological Monitoring System
From abstract: "This report describes the Aerial Radiological Measuring System (ARMS-II) operated by EG&G, Inc., for the Division of Biology and Medicine, U. S. Atomic Energy Commission." digital.library.unt.edu/ark:/67531/metadc172722/
Aerial Radiological Monitoring System: [Part] 1. Theoretical Analysis, Design, and Operation of a Revised System
Report containing an analysis of the Aerial Radiological Monitoring Survey (ARMS) program detailing the feasibility of improvements. Includes suggestions for revisions of the existing ARMS system. digital.library.unt.edu/ark:/67531/metadc13031/
Aerial Radiological Monitoring System: Part 2. Performance, Calibration, and Operational Check-Out of the EG&G ARMS-II Revised System
Report describing "the design, installation, and performance of the Edgerton, Germeshausen & Grier, Inc., Aerial Radiological Monitoring System used in Phase II of the Aerial Radiological Monitoring Survey (ARMS-II)" (p. 5). Contains descriptions and photographs of its components and descriptions of test runs. digital.library.unt.edu/ark:/67531/metadc13024/
Aerial Radiological Monitoring System: Part 3. Electronic Processing of ARMS-II Data
Report detailing the instrumentation and system performance of the Aerial Radiological Monitoring Survey (ARMS-II), a system used "to perform aerial surveys of ground radioactivity. It supplies both geographical position and radioactivity data in digital form, suitable for use with automatic plotting procedures" (p. 5) digital.library.unt.edu/ark:/67531/metadc13023/
Aerial transportation
The origin of air traffic dates from the war. The important development of aeronautic industries and the progress made in recent years, under the impelling force of circumstances, rendered it possible, after the close of hostilities, to consider the practical utilization of this new means of economic expansion. digital.library.unt.edu/ark:/67531/metadc53663/
Aero dopes and varnishes
Before proceeding to discuss the preparation of dope solutions, it will be necessary to consider some of the essential properties which should be possessed of a dope film, deposited in and on the surface of an aero fabric. The first is that it should tighten the material and second it should withstand weathering. digital.library.unt.edu/ark:/67531/metadc65251/
An aerodynamic analysis of the autogiro rotor with a comparison between calculated and experimental results
This report presents an extension of the autogiro theory of Glauert and Lock in which the influence of a pitch varying with the blade radius is evaluated and methods of approximating the effect of blade tip losses and the influence of reversed velocities on the retreating blades are developed. A comparison of calculated and experimental results showed that most of the rotor characteristics could be calculated with reasonable accuracy, and that the type of induced flow assumed has a secondary effect upon the net rotor forces, although the flapping motion is influenced appreciably. An approximate evaluation of the effect of parasite drag on the rotor blades established the importance of including this factor in the analysis. digital.library.unt.edu/ark:/67531/metadc66144/
The aerodynamic analysis of the gyroplane rotating-wing system
An aerodynamic analysis of the gyroplane rotating-wing system is presented herein. This system consists of a freely rotating rotor in which opposite blades are rigidly connected and allowed to rotate or feather freely about their span axis. Equations have been derived for the lift, the lift-drag ratio, the angle of attack, the feathering angles, and the rolling and pitching moments of a gyroplane rotor in terms of its basic parameters. Curves of lift-drag ratio against lift coefficient have been calculated for a typical case, showing the effect of varying the pitch angle, the solidarity, and the average blade-section drag coefficient. The analysis expresses satisfactorily the qualitative relations between the rotor characteristics and the rotor parameters. As disclosed by this investigation, the aerodynamic principles of the gyroplane are sound, and further research on this wing system is justified. digital.library.unt.edu/ark:/67531/metadc54506/
Aerodynamic and hydrodynamic characteristics of a deck-inlet multijet water-based-aircraft configuration designed for supersonic flight
No Description digital.library.unt.edu/ark:/67531/metadc62900/
Aerodynamic and hydrodynamic characteristics of a proposed supersonic multijet water-based hydro-ski aircraft with a variable-incidence wing
No Description digital.library.unt.edu/ark:/67531/metadc63527/
Aerodynamic and hydrodynamic characteristics of models of some aircraft-towed mine-sweeping devices : TED No. NACA AR 8201
No Description digital.library.unt.edu/ark:/67531/metadc62388/
Aerodynamic and hydrodynamic tests of a family of models of flying-boat hulls derived from a streamline body : NACA model 84 series
No Description digital.library.unt.edu/ark:/67531/metadc61711/
Aerodynamic and hydrodynamic tests of a family of models of flying hulls derived from a streamline body -- NACA model 84 series
A series of related forms of flying-boat hulls representing various degrees of compromise between aerodynamic and hydrodynamic requirements was tested in Langley Tank No. 1 and in the Langley 8-foot high-speed tunnel. The purpose of the investigation was to provide information regarding the penalties in water performance resulting from further aerodynamic refinement and, as a corollary, to provide information regarding the penalties in range or payload resulting from the retention of certain desirable hydrodynamic characteristics. The information should form a basis for over-all improvements in hull form. digital.library.unt.edu/ark:/67531/metadc60031/
Aerodynamic and inlet-flow-field characteristics at a free-stream Mach number of 3.0 for airplanes with circular fuselage cross sections and for two engine locations
No Description digital.library.unt.edu/ark:/67531/metadc64014/
Aerodynamic and lateral-control characteristics of a 1/28-scale model of the Bell X-1 airplane wing-fuselage combination : transonic-bump method
No Description digital.library.unt.edu/ark:/67531/metadc58563/
The aerodynamic aspect of wing-fuselage fillets
Model tests prove the feasibility of enhancing the aerodynamic qualities of wing-fuselage fillets by appropriate design of fuselage and wing roots. Abrupt changes from maximum fuselage height to wing chord must be avoided and every longitudinal section of fuselage and wing roots must be so faired and arranged as to preserve the original lift distribution of the continuous wing. Adapting the fuselage to the curvilinear circulation of the wing affords further improvement. The polars of such arrangements are almost the same as those of the "wing alone," thus voiding the superiority of the high-wing type airplane known with conventional design. digital.library.unt.edu/ark:/67531/metadc63461/
The aerodynamic behavior of a harmonically oscillating finite sweptback wing in supersonic flow
No Description digital.library.unt.edu/ark:/67531/metadc55838/
Aerodynamic characteristics and flap loads of perforated double split flaps on a rectangular NACA 23012 airfoil
No Description digital.library.unt.edu/ark:/67531/metadc61464/
Aerodynamic characteristics and flap loads of the brake-flap installation on the 0.40-scale model of the F4F-3 left wing panel
No Description digital.library.unt.edu/ark:/67531/metadc61360/
Aerodynamic characteristics and flying qualities of a tailless triangular-wing airplane configuration as obtained from flights of rocket-propelled models at transonic and supersonic speeds
A flight investigation of rocket-powered models of a tailless triangular-wing airplane configuration was made through the transonic and low supersonic speed range at the Langley Pilotless Aircraft Research Station at Wallops Island, Va. An analysis of the aerodynamic coefficients, stability derivatives, and flying qualities based on the results obtained from the successful flight tests of three models is presented. digital.library.unt.edu/ark:/67531/metadc56243/
Aerodynamic characteristics and pressure distributions of a 6-percent-thick 49 degree sweptback wing with blowing over half-span and full-span flaps
No Description digital.library.unt.edu/ark:/67531/metadc61390/
Aerodynamic characteristics at a Mach number of 1.25 of a 6-percent-thick triangular wing and 6- and 9-percent-thick triangular wings in combination with a fuselage : wing aspect ratio 2.31, biconvex airfoil sections
No Description digital.library.unt.edu/ark:/67531/metadc58471/
Aerodynamic characteristics at a Mach number of 1.38 of four wings of aspect ratio 4 having quarter-chord sweep angles of 0 degrees, 35 degrees, 45 degrees, and 60 degrees
No Description digital.library.unt.edu/ark:/67531/metadc58552/
Aerodynamic Characteristics at a Mach Number of 6.8 of Two Hypersonic Missile Configurations, One with Low-Aspect-Ratio Cruciform Fins and Trailing-Edge Flaps and One with a Flared Afterbody and All-Movable Controls
No Description digital.library.unt.edu/ark:/67531/metadc53265/
Aerodynamic characteristics at a Mach number of 6.8 of two hypersonic missile configurations, one with low-aspect-ratio cruciform fins and trailing-edge flaps and one with a flared afterbody and all-movable controls
No Description digital.library.unt.edu/ark:/67531/metadc64170/
Aerodynamic characteristics at high and low subsonic Mach numbers of four NACA 6-series airfoil sections at angles of attack from -2 to 31 degrees
No Description digital.library.unt.edu/ark:/67531/metadc59710/
Aerodynamic Characteristics at High and Low Subsonic Mach Numbers of the NACA 0012, 64(sub 2)-015, and 64(sub 3)-018 Airfoil Sections at Angles of Attack from -2 Degrees to 30 Degrees
An investigation has been made in the Langley low-turbulence pressure tunnel of the aerodynamic characteristics of the NACA 0012, 64(sub 2)-015, and 64(sub 3)-018 airfoil sections. Data were obtained at Mach numbers from 0.3 to that for tunnel choke, at angles of attack from -2deg to 30deg, and with the surface. of each airfoil smooth-and with roughness applied at the leading edge.The Reynolds numbers of the tests ranged from 0.8 x 10(exp 6) to 4.4 x 10(exp 6). The results are presented as variations of lift, drag, and quarter-chord pitching-moment coefficients with Mach number. digital.library.unt.edu/ark:/67531/metadc64237/
Aerodynamic characteristics at high speeds of a two-blade NACA 10-(3)(062)-045 propeller and of a two-blade NACA 10-(3)(08)-045 propeller
No Description digital.library.unt.edu/ark:/67531/metadc57659/
Aerodynamic characteristics at high speeds of full-scale propellers having Clark Y blade sections
No Description digital.library.unt.edu/ark:/67531/metadc64614/
Aerodynamic Characteristics at High Speeds of Full-Scale Propellers having Different Shank Designs
Tests of two 10-foot-diameter two-blade propellers which differed only in shank design have been made in the Langley 16-foot high-speed tunnel. The propellers are designated by their blade design numbers, NACA 10-(5)(08)-03, which had aerodynamically efficient airfoil shank sections, and NACA l0-(5)(08)-03R which had thick cylindrical shank sections typical of conventiona1 blades, The propellers mere tested on a 2000-horsepower dynamometer through a range of blade-angles from 20deg to 55deg at various rotational speeds and at airspeeds up to 496 miles per hour. The resultant tip speeds obtained simulate actual flight conditions, and the variation of air-stream Mach number with advance ratio is within the range of full-scale constant-speed propeller operation. Both propellers were very efficient, the maximum envelope efficiency being approximately 0,95 for the NACA 10-(5)(08)-03 propeller and about 5 percent less for the NACA 10-(5)(08)-03R propeller. Based on constant power and rotational speed, the efficiency of the NACA 10-(05)(08)-03 propeller was from 2.8 to 12 percent higher than that of the NACA 10-(5)(08)-03R propeller over a range of airspeeds from 225 to 450 miles per hour. The loss in maximum efficiency at the design blade angle for the NACA 10-(5)(08)-03 and 10-(5)(08)-03R propellers vas about 22 and 25 percent, respectively, for an increase in helical tip Mach number from 0.70 to 1.14. digital.library.unt.edu/ark:/67531/metadc64248/
Aerodynamic characteristics at high speeds of related full-scale propellers having different blade-section cambers
Wind-tunnel tests of a full-scale two-blade NACA 10-(10)(08)-03 (high camber) propeller have been made for a range of blade angles from 20 degrees to 55 degrees at airspeeds up to 500 miles per hour. The results of these tests have been compared with results from previous tests of the NACA 10-(3) (08)-03 (low camber) and NACA 10-(5)(08)-03 (medium camber) propellers to evaluate the effects of blade-section camber on propeller aerodynamic characteristics. digital.library.unt.edu/ark:/67531/metadc60706/
Aerodynamic characteristics at Mach number 4.04 of a rectangular wing of aspect ratio 1.33 having a 6-percent-thick circular-arc profile and a 30-percent-chord full-span trailing-edge flap
No Description digital.library.unt.edu/ark:/67531/metadc59736/
Aerodynamic characteristics at Mach number of 2.01 of two cruciform missile configurations having 70 degree delta wings with length-diameter ratios of 14.8 and 17.7 with several canard controls
No Description digital.library.unt.edu/ark:/67531/metadc60740/
Aerodynamic characteristics at Mach number of 4.06 of a typical supersonic airplane model using body and vertical-tail wedges to improve directional stability
No Description digital.library.unt.edu/ark:/67531/metadc63668/
Aerodynamic characteristics at Mach numbers 2.36 and 2.87 of an airplane configuration having a cambered arrow wing with a 75 degree swept leading edge
No Description digital.library.unt.edu/ark:/67531/metadc64269/
Aerodynamic characteristics at Mach numbers from 0.7 to 1.75 of a four-engine swept-wing airplane configuration as obtained from a rocket-propelled model test
No Description digital.library.unt.edu/ark:/67531/metadc62214/
Aerodynamic characteristics at Mach numbers from 2.5 to 3.5 of a canard bomber configuration designed for supersonic cruise flight
No Description digital.library.unt.edu/ark:/67531/metadc64406/
Aerodynamic characteristics at Mach numbers of 1.61 and 2.01 of various tip controls on the wing panel of a 0.05-scale model of a Martin XASM-N-7 (Bullpup) missile : TED No. NACA AD 3106
No Description digital.library.unt.edu/ark:/67531/metadc62380/
Aerodynamic characteristics at Reynolds numbers of 3.0 x 10(exp 6) and 6.0 x 10(exp 6) of three airfoil sections formed by cutting off various amounts from the rear portion of the NACA 0012 airfoil section
No Description digital.library.unt.edu/ark:/67531/metadc55451/
Aerodynamic characteristics at subcritical and supercritical Mach numbers of two airfoil sections having sharp leading edges and extreme rearward positions of maximum thickness
No Description digital.library.unt.edu/ark:/67531/metadc58030/
Aerodynamic characteristics at subsonic and supersonic Mach numbers of a thin triangular wing of aspect ratio 2 I : maximum thickness at 20 percent of the chord
No Description digital.library.unt.edu/ark:/67531/metadc57967/