You limited your search to:

  Partner: UNT Libraries Government Documents Department
 Serial/Series Title: NACA Technical Reports
 Collection: Technical Report Archive and Image Library
Aerodynamic theory and test of strut forms. Part I
This report presents the first part of a two part study made under this title. In this part the symmetrical inviscid flow about an empirical strut of high service merit is found by both the Rankine and the Joukowsky methods. The results can be made to agree as closely as wished. Theoretical stream surfaces as well as surfaces of constant speed and pressure in the fluid about the strut are found. The surface pressure computed from the two theories agrees well with the measured pressure on the fore part of the model but not so well on the after part. From the theoretical flow speed the surface friction is computed by an empirical formula. The drag integrated from the friction and measured pressure closely equals the whole measured drag. As the pressure drag and the whole drag are accurately determined, the friction formula also appears trustworthy for such fair shapes. (author). digital.library.unt.edu/ark:/67531/metadc65966/
Aerodynamic theory and tests of strut forms. Part II
This report presents the second of two studies under the same title. In this part five theoretical struts are developed from distributed sources and sinks and constructed for pressure and resistance tests in a wind tunnel. The surface pressures for symmetrical inviscid flow are computed for each strut from theory and compared with those found by experiment. The theoretical and experimental pressures are found to agree quantitatively near the bow, only qualitatively over the suction range, the experimental suctions being uniformly a little low, and not at all near the stern. This study is the strut sequel to Fuhrmann's research on airship forms, the one being a study in two dimensions, the other in three. A comparison of results indicates that the agreement between theory and experiment is somewhat better for bodies of revolution than for cylinders when both are shaped for slight resistance. The consistent deficiency of the experimental suctions which is found in the case of struts was not found in the case of airships, for which the experimental suctions were sometimes above sometimes below their theoretical values. digital.library.unt.edu/ark:/67531/metadc65989/
Aerofoils and aerofoil structural combinations
Report presents results of wind tunnel tests of cambered aerofoils and body-wing combinations used for biplanes. Aerodynamic characteristics including drag, lift-drift ratio and stability derivatives are given. digital.library.unt.edu/ark:/67531/metadc65638/
Aeronautic instruments. Section I : general classification of instruments and problems including bibliography
This report is intended as a technical introduction to the series of reports on aeronautic instruments. It presents a discussion of those subjects which are common to all instruments. First, a general classification is given, embracing all types of instruments used in aeronautics. Finally, a classification is given of the various problems confronted by the instrument expert and investigator. In this way the following groups of problems are brought up for consideration: problems of mechanical design, human factor, manufacturing problems, supply and selection of instruments, problems concerning the technique of testing, problems of installation, problems concerning the use of instruments, problems of maintenance, and physical research problems. This enumeration of problems which are common to instruments in general serves to indicate the different points of view which should be kept in mind in approaching the study of any particular instrument. digital.library.unt.edu/ark:/67531/metadc65775/
Aeronautic instruments. Section II : altitude instruments
This report is Section two of a series of reports on aeronautic instruments (Technical Report nos. 125 to 132, inclusive). This section discusses briefly barometric altitude determinations, and describes in detail the principal types of altimeters and barographs used in aeronautics during the recent war. This is followed by a discussion of performance requirements for such instruments and an account of the methods of testing developed by the Bureau of Standards. The report concludes with a brief account of the results of recent investigations. For accurate measurements of altitude, reference must also be made to thermometer readings of atmospheric temperature, since the altitude is not fixed by atmospheric pressure alone. This matter is discussed in connection with barometric altitude determination. digital.library.unt.edu/ark:/67531/metadc65776/
Aeronautic instruments. Section III : aircraft speed instruments
Part 1 contains a discussion and description of the various types of air speed measuring instruments. The authors then give general specifications and performance requirements with the results of tests on air speed indicators at the Bureau of Standards. Part 2 reports methods and laboratory apparatus used at the Bureau of Standards to make static tests. Methods are also given of combining wind tunnel tests with static tests. Consideration is also given to free flight tests. Part 3 discusses the problem of finding suitable methods for the purpose of measuring the speed of aircraft relative to the ground. digital.library.unt.edu/ark:/67531/metadc65777/
Aeronautic instruments. Section IV : direction instruments
Part one points out the adequacy of a consideration of the steady state gyroscopic motion as a basis for the discussion of displacements of the gyroscope mounted on an airplane, and develops a simple theory on this basis. Principal types of gyroscopic inclinometers are described and requirements stated. Part two describes a new type of stabilizing gyro mounted on top of a spindle by means of a universal joint, the spindle being kept in a vertical position by supporting it as a pendulum of which the bob is the driving motor. Methods of tests and the difficulties in designing a satisfactory and reliable compass for aircraft use in considered in part three. Part four contains a brief general treatment of the important features of construction of aircraft compasses and description of the principal types used. digital.library.unt.edu/ark:/67531/metadc65778/
Aeronautic instruments. Section V : power plant instruments
Part 1 gives a general discussion of the uses, principles, construction, and operation of airplane tachometers. Detailed description of all available instruments, both foreign and domestic, are given. Part 2 describes methods of tests and effect of various conditions encountered in airplane flight such as change of temperature, vibration, tilting, and reduced air pressure. Part 3 describes the principal types of distance reading thermometers for aircraft engines, including an explanation of the physical principles involved in the functioning of the instruments and proper filling of the bulbs. Performance requirements and testing methods are given and a discussion of the source of error and results of tests. Part 4 gives methods of tests and calibration, also requirements of gauges of this type for the pressure measurement of the air pressure in gasoline tanks and the engine oil pressure on airplanes. Part 5 describes two types of gasoline gauges, the float type and the pressure type. Methods of testing and calibrating gasoline depth gauges are given. The Schroeder, R. A. E., and the Mark II flowmeters are described. digital.library.unt.edu/ark:/67531/metadc65779/
Aeronautic instruments. Section VI : aerial navigation and navigating instruments
This report outlines briefly the methods of aerial navigation which have been developed during the past few years, with a description of the different instruments used. Dead reckoning, the most universal method of aerial navigation, is first discussed. Then follows an outline of the principles of navigation by astronomical observation; a discussion of the practical use of natural horizons, such as sea, land, and cloud, in making extant observations; the use of artificial horizons, including the bubble, pendulum, and gyroscopic types. A description is given of the recent development of the radio direction finder and its application to navigation. digital.library.unt.edu/ark:/67531/metadc65781/
Aeronautic instruments. Section VI : oxygen instruments
This report contains statements as to amount of oxygen required at different altitudes and the methods of storing oxygen. The two types of control apparatus - the compressed oxygen type and the liquid oxygen type - are described. Ten different instruments of the compressed type are described, as well as the foreign instruments of the liquid types. The performance and specifications and the results of laboratory tests on all representative types conclude this report. digital.library.unt.edu/ark:/67531/metadc65780/
Aeronautic instruments. Section VIII : recent developments and outstanding problems
This report is section VIII of a series of reports on aeronautic instruments. The preceding reports in this series have discussed in detail the various types of aeronautic instruments which have reached a state of practical development such that they have already found extensive use. It is the purpose of this paper to discuss briefly some of the more recent developments in the field of aeronautic instrument design and to suggest some of the outstanding problems awaiting solution. digital.library.unt.edu/ark:/67531/metadc65782/
Aeronautic Power Plant Investigations
Report presents the design of radiators, spark plugs and test equipment used to test the performance of aeronautic engines at high altitudes. digital.library.unt.edu/ark:/67531/metadc65642/
Air conditions close to the ground and the effect on airplane landings
This report presents the results of an investigation undertaken to determine the feasibility of making glide landings in gusty air. Wind velocities were measured at several stations between the ground and a height of 51 feet, and flight tests were made to determine the actual influence of gusts on an airplane gliding close to the ground. digital.library.unt.edu/ark:/67531/metadc66146/
Air-consumption parameters for automatic mixture control of aircraft engines
Data obtained from Navy calibration tests of an 18-cylinder, two-row, radial engine of 3350-cubic-inch displacement and a 14-cylinder, two-row, radial engine of 2600-cubic-inch displacement (carburetor types) were analyzed to show the correlation between the air consumption of these engines and the parameters that evaluate the air consumption from intake-manifold temperature and pressure, exhaust back pressure, and engine speed. digital.library.unt.edu/ark:/67531/metadc60083/
Air flow around finned cylinders
Report presents the results of a study made to determine the air-flow characteristics around finned cylinders. Air-flow distribution is given for a smooth cylinder, for a finned cylinder having several fin spacings and fin widths, and for a cylinder with several types of baffle with various entrance and exit shapes. The results of these tests show: that flow characteristics around a cylinder are not so critical to changes in fin width as they are to fin spacing; that the entrance of the baffle has a marked influence on its efficiency; that properly designed baffles increase the air flow over the rear of the cylinder; and that these tests check those of heat-transfer tests in the choice of the best baffle. digital.library.unt.edu/ark:/67531/metadc66213/
Air flow in a separating laminar boundary layer
The speed distribution in a laminar boundary layer on the surface of an elliptic cylinder, of major and minor axes 11.78 and 3.98 inches, respectively, has been determined by means of a hot-wire anemometer. The direction of the impinging air stream was parallel to the major axis. Special attention was given to the region of separation and to the exact location of the point of separation. An approximate method, developed by K. Pohlhausen for computing the speed distribution, the thickness of the layer, and the point of separation, is described in detail; and speed-distribution curves calculated by this method are presented for comparison with experiment. digital.library.unt.edu/ark:/67531/metadc66183/
Air flow in the boundary layer near a plate
The published data on the distribution of speed near a thin flat plate with sharp leading edge placed parallel to the flow (skin friction plate) are reviewed and the results of some additional measurements are described. The purpose of the experiments was to study the basic phenomena of boundary-layer flow under simple conditions. digital.library.unt.edu/ark:/67531/metadc66220/
Air flow in the boundary layer of an elliptic cylinder
The boundary layer of an elliptic cylinder of major and minor axis 11.78 and 3.98 inches, respectively, was investigated in air stream in which the turbulence could be varied. Conditions were arranged so that the flow was two-dimensional with the major axis of the ellipse parallel to the undisturbed stream. Speed distributions across the boundary layer were determined with a hot-wire anemometer at a number of positions about the surface for the lowest and highest intensities of turbulence, with the air speed in both cases sufficiently high to produce a turbulent boundary layer over the downstream part of the surface. The magnitude and the frequency of the speed fluctuations in the boundary layer were also measured by the use of the conventional type of hot-wire turbulence apparatus. Stream turbulence was found to affect both the nature of transition from laminar to turbulent flow in the layer and the position on the surface at which transition occurred. Transition was then investigated in detail with stream turbulence of several different scales and intensities. digital.library.unt.edu/ark:/67531/metadc66310/
Air flow through poppet valves
Report discusses the comparative continuous flow characteristics of single and double poppet valves. The experimental data presented affords a direct comparison of valves, single and in pairs of different sizes, tested in a cylinder designed in accordance with current practice in aviation engines. digital.library.unt.edu/ark:/67531/metadc65644/
Air force and moment for N-20 wing with certain cut-outs
The airplane designer often finds it necessary, in meeting the requirements of visibility, to remove area or to otherwise locally distort the plan or section of an airplane wing. This report, prepared for the Bureau of Aeronautics January 15, 1925, contains the experimental results of tests on six 5 by 30 inch N-20 wing models, cut out or distorted in different ways, which were conducted in the 8 by 8 foot wind tunnel of the Navy Aerodynamical Laboratory in Washington in 1924. The measured and derived results are given without correction for vl/v for wall effect and for standard air density, p=0.00237 slug per cubic foot. digital.library.unt.edu/ark:/67531/metadc65919/
Air force tests of sperry messenger model with six sets of wings
The purpose of this test was to compare six well-known airfoils, the R.A.F 15, U.S.A. 5, U.S.A. 27, U.S.A. 35-B, Clark Y, and Gottingen 387, fitted to the Sperry Messenger model, at full scale Reynolds number as obtained in the variable density wind tunnel of the National Advisory Committee for Aeronautics; and to determine the scale effect on the model equipped with all the details of the actual airplane. The results show a large decrease in minimum drag coefficient upon increasing the Reynolds number from about one-twentieth scale to full scale. Maximum lift coefficient was increased with increasing scale for all the airfoils except the Gottingen 387, for which it was slightly decreased. A comparison is made between the results of these tests and those obtained from tests made in this tunnel on airfoils alone. (author). digital.library.unt.edu/ark:/67531/metadc65922/
Air forces and moments on triangular and related wings with subsonic leading edges oscillating in supersonic potential flow
This analysis treats the air forces and moments in supersonic potential flow on oscillating triangular wings and a series of sweptback and arrow wings with subsonic leading edges and supersonic trailing edges. For the wings undergoing sinusoidal torsional oscillations simultaneously with vertical translations, the linearized velocity potential is derived in the form of a power series in terms of a frequency parameter. This method can be useful for treatment of similar problems for other plan forms and for wings undergoing other sinusoidal motions. For triangular wings, as many terms of such a series expansion as may be derived can be determined; however, the terms after the first few become very cumbersome. Closed expressions that include the reduced frequency to the fifth power, an order which is sufficient for a large class of practical application, are given for the velocity potential and for the components of chordwise section force and moment coefficients. These wings are found to exhibit the possibility of undamped torsional oscillations for certain ranges of Mach number and locations of the axis of rotation. The ranges of these parameters are delineated for triangular wings. digital.library.unt.edu/ark:/67531/metadc60458/
Air forces, moments and damping on model of fleet airship Shenandoah
To furnish data for the design of the fleet airship Shenandoah, a model was made and tested in the 8 by 8 foot wind tunnel for wind forces, moments, and damping, under conditions described in this report. The results are given for air of standard density. P=0.00237 slugs per cubic foot with vl/v correction, and with but a brief discussion of the aerodynamic design features of the airship. digital.library.unt.edu/ark:/67531/metadc65867/
The air forces on a model of the sperry messenger airplane without propeller
This is a report on a scale effect research which was made in the variable-density wind tunnel of the National Advisory Committee for Aeronautics at the request of the Army Air Service. A 1/10 scale model of the sperry messenger airplane with USA-5 wings was tested without a propeller at various Reynolds numbers up to the full scale value. Two series of tests were: the first on the original model which was of the usual simplified construction, and the second on a modified model embodying a great amount of detail. The experimental results show that the scale effect is almost entirely confined to the drag. It was also found that the model should be geometrically similar to the full-scale airplane if the test data are to be directly applicable to full scale. digital.library.unt.edu/ark:/67531/metadc65877/
The air forces on a systematic series of biplane and triplane cellule models
The air forces on a systematic series of biplane and triplane cellule models are the subject of this report. The test consist in the determination of the lift, drag, and moment of each individual airfoil in each cellule, mostly with the same wing section. The magnitude of the gap and of the stagger is systematically varied; not, however, the decalage, which is zero throughout the tests. Certain check tests with a second wing section make the tests more complete and conclusions more convincing. The results give evidence that the present army and navy specifications for the relative lifts of biplanes are good. They furnish material for improving such specifications for the relative lifts of triplanes. A larger number of factors can now be prescribed to take care of different cases. digital.library.unt.edu/ark:/67531/metadc65908/
Air propellers in yaw
Report presents the results of tests conducted at Stanford University of a 3-foot model propeller at four pitch settings and at 0 degree, 10 degrees, 20 degrees, and 30 degrees yaw. In addition to the usual propeller coefficients, cross-wind and vertical forces and yawing, pitching, and rolling moments were determined about axes having their origin at the intersection of the blade axis and the axis of rotation. The tests showed that the maximum efficiency was reduced only slightly for angles of yaw up to 10 degrees but that at 30 degrees yaw the loss in efficiency was about 10 percent. In all cases the cross-wind force was found to be greater than the cross-wind component of the axial thrust. With a yawed propeller an appreciable thrust was found for v/nd for zero thrust at zero yaw. Yawing a propeller was found to induce a pitching moment that increased in magnitude with yaw. digital.library.unt.edu/ark:/67531/metadc66255/
Aircraft accidents.method of analysis
This report is a revision of NACA-TR-357. It was prepared by the Committee on Aircraft Accidents. The purpose of this report is to provide a basis for the classification and comparison of aircraft accidents, both civil and military. digital.library.unt.edu/ark:/67531/metadc66234/
Aircraft accidents : method of analysis
The revised report includes the chart for the analysis of aircraft accidents, combining consideration of the immediate causes, underlying causes, and results of accidents, as prepared by the special committee, with a number of the definitions clarified. A brief statement of the organization and work of the special committee and of the Committee on Aircraft Accidents; and statistical tables giving a comparison of the types of accidents and causes of accidents in the military services on the one hand and in civil aviation on the other, together with explanations of some of the important differences noted in these tables. digital.library.unt.edu/ark:/67531/metadc66012/
Aircraft accidents : method of analysis
This report on a method of analysis of aircraft accidents has been prepared by a special committee on the nomenclature, subdivision, and classification of aircraft accidents organized by the National Advisory Committee for Aeronautics in response to a request dated February 18, 1928, from the Air Coordination Committee consisting of the Assistant Secretaries for Aeronautics in the Departments of War, Navy, and Commerce. The work was undertaken in recognition of the difficulty of drawing correct conclusions from efforts to analyze and compare reports of aircraft accidents prepared by different organizations using different classifications and definitions. The air coordination committee's request was made "in order that practices used may henceforth conform to a standard and be universally comparable." the purpose of the special committee therefore was to prepare a basis for the classification and comparison of aircraft accidents, both civil and military. (author). digital.library.unt.edu/ark:/67531/metadc65962/
Aircraft compass characteristics
A description of the test methods used at the National Bureau of Standards for determining the characteristics of aircraft compasses is given. The methods described are particularly applicable to compasses in which mineral oil is used as the damping liquid. Data on the viscosity and density of certain mineral oils used in United States Navy aircraft compasses are presented. Characteristics of Navy aircraft compasses IV to IX and some other compasses are shown for the range of temperatures experienced in flight. Results of flight tests are presented. These results indicate that the characteristic most desired in a steering compass is a short period and, in a check compass, a low overswing. digital.library.unt.edu/ark:/67531/metadc66209/
Aircraft power-plant instruments
This report supersedes NACA-TR-129 which is now obsolete. Aircraft power-plant instruments include tachometers, engine thermometers, pressure gages, fuel-quantity gages, fuel flow meters and indicators, and manifold pressure gages. The report includes a description of the commonly used types and some others, the underlying principle utilized in the design, and some design data. The inherent errors of the instrument, the methods of making laboratory tests, descriptions of the test apparatus, and data in considerable detail in the performance of commonly used instruments are presented. Standard instruments and, in cases where it appears to be of interest, those used as secondary standards are described. A bibliography of important articles is included. digital.library.unt.edu/ark:/67531/metadc65783/
Aircraft rate-of-climb indicators
The theory of the rate-of-climb indicator is developed in a form adapted for application to the instrument in its present-day form. Compensations for altitude, temperature, and rate of change of temperature are discussed from the designer's standpoint on the basis of this theory. Certain dynamic effects, including instrument lag, and the use of the rate-of-climb indicator as a statoscope are also considered. Modern instruments are described. A laboratory test procedure is outlined and test results are given. digital.library.unt.edu/ark:/67531/metadc66324/
Aircraft speed instruments
This report presents a concise survey of the measurement of air speed and ground speed on board aircraft. Special attention is paid to the pitot-static air-speed meter which is the standard in the United States for airplanes. Air-speed meters of the rotating vane type are also discussed in considerable detail on account of their value as flight test instruments and as service instruments for airships. Methods of ground-speed measurement are treated briefly, with reference to the more important instruments. A bibliography on air-speed measurement concludes the report. digital.library.unt.edu/ark:/67531/metadc66077/
Aircraft woods: their properties, selection, and characteristics
Strength values of various woods for aircraft design for a 15 per cent moisture condition of material and a 3-second duration of stress are presented, and also a discussion of the various factors affecting the values. The toughness-test method of selecting wood is discussed, and a table of acceptance values for several species is given. digital.library.unt.edu/ark:/67531/metadc66007/
Airfoil pressure distribution investigation in the variable density wind tunnel
Report presents the results of wind tunnel tests of pressure distribution measurements over one section each of six airfoils. Pressure distribution diagrams, as well as the integrated characteristics of the airfoils, are given for both a high and a low dynamic scale or, Reynolds number VL/V, for comparison with flight and other wind-tunnel tests, respectively. It is concluded that the scale effect is very important only at angles of attack near the burble. The distribution of pressure over an airfoil having a Joukowski section is compared with the theoretically derived distribution. A further study of the distribution of pressure over all of the airfoils resulted in the development of an approximate method of predicting the pressure distribution along the chord of any normal airfoil for all attitudes within the working range if the distribution at one attitude is known. digital.library.unt.edu/ark:/67531/metadc66006/
Airfoil profiles for minimum pressure drag at supersonic velocities -- general analysis with application to linearized supersonic flow
A theoretical investigation is made of the airfoil profile for minimum pressure drag at zero lift in supersonic flow. In the first part of the report a general method is developed for calculating the profile having the least pressure drag for a given auxiliary condition, such as a given structural requirement or a given thickness ratio. The various structural requirements considered include bending strength, bending stiffness, torsional strength, and torsional stiffness. No assumption is made regarding the trailing-edge thickness; the optimum value is determined in the calculations as a function of the base pressure. To illustrate the general method, the optimum airfoil, defined as the airfoil having minimum pressure drag for a given auxiliary condition, is calculated in a second part of the report using the equations of linearized supersonic flow. digital.library.unt.edu/ark:/67531/metadc60418/
Airfoil section characteristics as affected by protuberances
The drag and interference caused by protuberance from the surface of an airfoil have been determined in the NACA variable-density wind tunnel at a Reynolds number approximately 3,100,000. The effects of variations of the fore-and-aft position, height, and shape of the protuberance were measured by determining how the airfoil section characteristics were affected by the addition of the various protuberances extending along the entire span of the airfoil. The results provide fundamental data on which to base the prediction of the effects of actual short-span protuberances. The data may also be applied to the design of air brakes and spoilers. digital.library.unt.edu/ark:/67531/metadc66103/
Airfoil section characteristics as affected by variations of the Reynolds number
Report presents the results of an investigation of a systematically chosen representative group of related airfoils conducted in the NACA variable-density wind tunnel over a wide range of Reynolds number extending well into the flight range. The tests were made to provide information from which the variations of airfoil section characteristics with changes in the Reynolds number could be inferred and methods of allowing for these variations in practice could be determined. This work is one phase of an extensive and general airfoil investigation being conducted in the variable-density tunnel and extends the previously published researches concerning airfoil characteristics as affected by variations in airfoil profile determined at a single value of the Reynolds number. digital.library.unt.edu/ark:/67531/metadc66245/
Airfoil section characteristics as applied to the prediction of air forces and their distribution on wings
The results of previous reports dealing with airfoil section characteristics and span load distribution data are coordinated into a method for determining the air forces and their distribution on airplane wings. Formulas are given from which the resultant force distribution may be combined to find the wing aerodynamic center and pitching moment. The force distribution may also be resolved to determine the distribution of chord and beam components. The forces are resolved in such a manner that it is unnecessary to take the induced drag into account. An illustration of the method is given for a monoplane and a biplane for the conditions of steady flight and a sharp-edge gust. The force determination is completed by outlining a procedure for finding the distribution of load along the chord of airfoil sections. digital.library.unt.edu/ark:/67531/metadc66289/
Airfoil section data obtained in the NACA variable-density tunnel as affected by support interference and other corrections
The results of an investigation of the effect of support interference on airfoil drag data obtained in the variable-density tunnel are presented. As a result of the support interference, previously published airfoil data from the variable-density tunnel have shown too large drag coefficients and too large a rate of increase of drag coefficients and too large a rate increase of drag coefficients with airfoil thickness. The practical effect of the corrections on the choice of the optimum section is briefly considered and corrected data for a selected list of airfoils are presented as a convenience to the designer. Methods of correcting published data for other airfoils are presented. digital.library.unt.edu/ark:/67531/metadc66327/
Airplane dopes and doping
Cellulose acetate and cellulose nitrate are the important constituents of airplane dopes in use at the present time, but planes were treated with other materials in the experimental stages of flying. The above compounds belong to the class of colloids and are of value because they produce a shrinking action on the fabric when drying out of solution, rendering it drum tight. Other colloids possessing the same property have been proposed and tried. In the first stages of the development of dope, however, shrinkage was not considered. The fabric was treated merely to render it waterproof. The first airplanes constructed were covered with cotton fabric stretched as tightly as possible over the winds, fuselage, etc., and flying was possible only in fine weather. The necessity of an airplane which would fly under all weather conditions at once became apparent. Then followed experiments with rubberized fabrics, fabrics treated with glue rendered insoluble by formaldehyde or bichromate, fabrics treated with drying and nondrying oils, shellac, casein, etc. It was found that fabrics treated as above lost their tension in damp weather, and the oil from the motor penetrated the proofing material and weakened the fabric. For the most part the film of material lacked durability. Cellulose nitrate lacquers, however were found to be more satisfactory under varying weather conditions, added less weight to the planes, and were easily applied. On the other hand, they were highly inflammable, and oil from the motor penetrated the film of cellulose nitrate, causing the tension of the fabric to be relaxed. digital.library.unt.edu/ark:/67531/metadc62702/
Airplane Stress Analysis
Report presents stress analysis of individual components of an airplane. Normal and abnormal loads, sudden loads, simple stresses, indirect simple stresses, resultant unit stress, repetitive and equivalent stress, maximum steady load and stress are considered. digital.library.unt.edu/ark:/67531/metadc65730/
The airplane tensiometer
Certain parts of an airplane are subjected not only to the stresses imposed by the aerodynamic or flying load, but also to the initial stresses, caused by the tension in the stay and drift wires. Report describes a tensiometer that measures such stresses which is simple in construction, accurate, and easily and quickly operated even by inexperienced persons. Two sizes of the instrument are available. One is suitable for wires up to one-fourth inch in diameter and the other for wires from one-fourth to three-eights inch in diameter. digital.library.unt.edu/ark:/67531/metadc65652/
Airship model tests in the variable density wind tunnel
This report presents the results of wind tunnel tests conducted to determine the aerodynamic characteristics of airship models. Eight Goodyear-Zeppelin airship models were tested in the original closed-throat tunnel. After the tunnel was rebuilt with an open throat a new model was tested, and one of the Goodyear-Zeppelin models was retested. The results indicate that much may be done to determine the drag of airships from evaluations of the pressure and skin-frictional drags on models tested at large Reynolds number. digital.library.unt.edu/ark:/67531/metadc66051/
An airship slide rule
This report prepared for the National Advisory Committee for Aeronautics, describes an airship slide rule developed by the Gas-Chemistry Section of the Bureau of Standards, at the request of the Bureau of Engineering of the Navy Department. It is intended primarily to give rapid solutions of a few problems of frequent occurrence in airship navigation, but it can be used to advantage in solving a great variety of problems, involving volumes, lifting powers, temperatures, pressures, altitudes and the purity of the balloon gas. The rule is graduated to read directly in the units actually used in making observations, constants and conversion factors being taken care of by the length and location of the scales. It is thought that with this rule practically any problem likely to arise in this class of work can be readily solved after the user has become familiar with the operation of the rule; and that the solution will, in most cases, be as accurate as the data warrant. digital.library.unt.edu/ark:/67531/metadc65812/
Alternating-current equipment for the measurement of fluctuations of air speed in turbulent flow
Recent electrical and mechanical improvements have been made in the equipment developed at the National Bureau of Standards for measurement of fluctuations of air speed in turbulent flow. Data useful in the design of similar equipment are presented. The design of rectified alternating-current power supplies for such apparatus is treated briefly, and the effect of the power supplies on the performance of the equipment is discussed. digital.library.unt.edu/ark:/67531/metadc66256/
The altitude effect on air speed indicators
The object of this report is to present the results of a theoretical and experimental study of the effect, on the performance of air speed indicators, of the different atmospheric conditions experienced at various altitudes. digital.library.unt.edu/ark:/67531/metadc65760/
The altitude effect on air speed indicators II
In an investigation described in NACA Technical Report 110, it was shown that under certain conditions, particularly for the relatively low-speed flight of airships, the data obtained were not sufficiently accurate. This report describes an investigation in which the data obtained were sufficiently accurate and complete to enable the viscosity correction to be deduced quantitatively for a number of the air-speed pressure nozzles in common use. The report opens with a discussion of the theory of the performance of air-speed nozzles and of the calibration of the indicators, from which the theory of the altitude correction is developed. Then follows the determination of the performance characteristics of the nozzles and calibration constants used for the indicators. In the latter half of the report, the viscosity correction is computed for the Zahm Pitot-venturi nozzles. digital.library.unt.edu/ark:/67531/metadc65807/
The altitude laboratory for the test of aircraft engines
Report presents descriptions, schematics, and photographs of the altitude laboratory for the testing of aircraft engines constructed at the Bureau of Standards for the National Advisory Committee for Aeronautics. digital.library.unt.edu/ark:/67531/metadc65663/
Altitude-pressure tables based on the United States standard atmosphere
This report is a revision of the altitude pressure tables of the United States standard atmosphere given in Technical Report No. 246. The altitude range has been extended from 50,000 to 80,000 feet. digital.library.unt.edu/ark:/67531/metadc66194/