You limited your search to:

  Partner: UNT Libraries Government Documents Department
 Serial/Series Title: NACA Special Report
 Collection: Technical Report Archive and Image Library
Engine Operation in Flight for Minimum Fuel Consumption
Engine and airplane performance data have been gathered from various sources and analyzed to determine indications of the most economical methods of flight operation from a consideration of fuel expenditure. The analysis includes the influence of such facts as fuel-air ratio, engine speed, engine knock, altitude, cylinder cooling, spark timing, and limits of cruising brake mean effective pressure. The results indicate that the cheapest power is obtained with approximately correct mixture at low engine speed and highest permissible manifold pressure. If more power is desired, the methods of obtaining it are, in order of fuel economy: (a) increasing the engine speed and maintaining safe cylinder temperatures by cooling; (b) retarding the spark or cooling further to permit higher manifold pressure; and, (c) riching the mixture. The analysis further shows that the maximum time endurance of flight occurs at the air speed corresponding to minimum thrust horsepower required and with minimum practicable engine speed. Maximum mileage per pound of fuel is obtained at slightly higher air speed. The fuel-air ratio should be approximately the theoretically correct ratio in both cases. For an engine equipped with a geared supercharger, as in the example presented, and with knock as the limiting condition, a comparison of operation at sea level and at 6,000 feet shoes flight at altitude to be more economical on the basis of both range and endurance.
Estimated Effect of Ring Cowl on the Climb and Ceiling of an Airplane, Special Report
Although the application of a ring cowl to an airplane with an air-cooled engine increases the maximum L/D and the high speed to an appreciable extent, the performance in climb and ceiling is not increased as much as one would expect without analyzing the conditions. When a ring cowl is installed on an airplane, the propeller is set at a higher pitch to allow the engine to turn its rated r.p.m. at the increased high speed. V/nD is increased and the propeller efficiency at high speed is increased slightly. The ratio of r.p.m. at climbing speed, V(sub c) , to the r.p.m. at maximum speed, V (sub m) is dependent upon the ratio of V(sub c) to V(sub m). The increase in V(sub c) for all airplane with ring cowl i s not as great as the increase in V(sub m), so that the ratio V(sub c)/V(sub m) is less than for the airplane without ring. Consequently the r.p.m. and full throttle thrust power available are less at V(sub c) for the airplane with ring cowl and in spite of the increase in L/D due to the installation of the ring, the excess thrust power available for climbing is not appreciably changed. The same method of reasoning accounts for the small increase in absolute ceiling in spite of a large increase in L/D maximum.
Experimental Determination of Exhaust Gas Thrust, Special Report
This investigation presents the results of tests made on a radial engine to determine the thrust that can be obtained from the exhaust gas when discharged from separate stacks and when discharged from the collector ring with various discharge nozzles. The engine was provided with a propeller to absorb the power and was mounted on a test stand equipped with scales for measuring the thrust and engine torque. The results indicate that at full open throttle at sea level, for the engine tested, a gain in thrust horsepower of 18 percent using separate stacks, and 9.5 percent using a collector ring and discharge nozzle, can be expected at an air speed of 550 miles per hour.
Experimental investigation of a new type of low-drag wing-nacelle combination
No Description
Experiments on the Recovery of Waste Heat in Cooling Ducts, Special Report
Tests have been conducted in the N.A.C.A. full-scale wind tunnel to investigate the partial recovery of the heat energy which is apparently wasted in the cooling of aircraft engines. The results indicate that if the radiator is located in an expanded duct, a part of the energy lost in cooling is recovered; however, the energy recovery is not of practical importance up to airplane speeds of 400 miles per hour. Throttling of the duct flow occurs with heated radiators and must be considered in designing the duct outlets from data obtained with cold radiators in the ducts.
A Flight Investigation of Exhaust-Heat De-Icing, Special Report
The National Advisory Committee for Aeronautics has conducted exhaust-heat de-icing tests inflight t o provide data needed in the application of this method of ice prevention. Thc capacity to extract heat from the exhaust gas for de-icing purposes, the quantity of heat required, and other factors were examined. The results indicate that a wing-heating system employing a spanwise exhaust tube within the leading edge of the wing will make available for de-icing purposes between 30 and 35 percent of the exhaust-gas heat. Data are given by which the heat required for ice prevention can be calculated. Sample calculations have been made, on a basis of existing engine power over wing area ratios, to show that sufficient heating can be obtained for ice protection on modern transport airplanes,.
Flight Measurements of the Aileron Characteristics of a Grumman F4F-3 Airplane
The aileron characteristics of a Grumman F4F-3 airplane were determined in flight by means of NACA recording and indicating instruments. The results show that the ailerons met NACA minimum requirements for satisfactory control throughout a limited speed range. A helix angle of approximately 0.07 radian was produced with flaps down at speeds from 90 to 115 miles per hour indicated airspeed and with flaps up from 115 to 200 miles per hour. With flaps up at 90 miles per hour, the helix angle dropped to 0.055 radian; above 200 miles per hour heavy aileron stick forces seriously restricted maneuverability in roll.
Flight Tests of Exhaust Gas Jet Propulsion, Special Report
Flight test s were conducted on the XP-41 airplane, equipped with a Pratt & Whitney R1830-19, 14-cylinder, air-cooled engine, to determine the increase in flight speed obtainable by the use of individual exhaust stacks directed rearwardly to obtain exhaust-gas thrust. Speed increases up to 18 miles per hour at 20,000 feet altitude were obtained using stacks having an exit area of 3.42 square inches for each cylinder. A slight increase in engine power and decrease in cylinder temperature at a given manifold pressure were obtained with the individual stacks as compared with a collector-ring installation. Exhaust-flame visibility was quite low, particularly in the rich range of fuel-air ratios.
Flight Tests on the Lateral Control of an Airplane having a Split Flap which Retracts Ahead of Conventional Ailerons, Special Report
Since the recent more or less extensive adoption of high-lift flaps on airplane wings, the problem of providing satisfactory lateral control without sacrificing a part of the span of the flaps has become one of some importance. The difficulties have been largely a matter of obtaining satisfactory rolling moments with a smoothly graduated action, together with sufficiently small control forces throughout the entire speed range. As part of an investigation including several different lateral-control arrangements to be used with split flaps, the tests reported in this paper were made on one arrangement in which conventional ailerons of narrow chord are used, and a split flap is retracted into the under surface of th wing forward of th ailerons. When the flap is retracted, the arrangement is as sketched in figure 1(a). If a simple form of split flap were used, hinged at its forward edge, the appearance when deflected would be as shown in figure 1(b). The flap if deflected with its leading edge remaining in this forward position would give somewhat less than three fourths of the lift increase of the same flap in the usual rear position. (See reference 1.). If, as shown in figure 1(c), the split flap ahead of th aileron is moved to the rear as the trailing=edge portion is deflected downward, a double advantage is obtained. The deflected flap can be located in the most effective region for high lift (reference 1), and the force required to deflect the flap is reduced. This is the arrangement used in the present tests.
Full-Scale Tests of 4- and 6-Blade, Single- and Dual-Rotating Propellers, Special Report
Test of 10-foot diameter, 4- and 6-blade single- and dual-rotating propellers were conducted in the 20-foot propeller-research tunnel. The propellers were mounted at the front end of a streamline body incorporating spinners to house the hub portions. The effect of a symmetrical wing mounted in the slipstream was investigated. The blade angles investigated ranged from 20 degrees to 65 degrees; the latter setting corresponds to airplane speeds of over 500 miles per hour. The results indicate that dual-rotating propellers were from 0 to 6% more efficient than single-rotating ones; but when operating in the presence of a wing the gain was reduced about one-half. Other advantages of dual-rotating propellers were found to include greater power absorption and greater efficiency at the low V/nD operating range of high pitch propellers.
Full-Scale Tests of Several Propellers Equipped with Spinners, Cuffs, Airfoil and Round Shanks, and NACA 16-Series Sections, Special Report
Wind-tunnel tests of several propeller, cuff, and spinner combinations were conducted in the 20 foot propeller-research tunnel. Three propellers, which ranged in diameter from 8.4 to 11.25 feet, were tested at the front end of a streamline body incorporating spinners of two diameters. The tests covered a blade angle range from 20 deg to 65 deg. The effect of spinner diameter and propeller cuffs on the characteristics of one propeller was determined. Test were also conducted using a propeller which incorporated aerodynamically good shank sections and using one which incorporated the NACA 16 series sections for the outer 20 percent of the blades. Compressibility effects were not measured, owing to the low testing speeds. The results indicated that a conventional propeller was slightly more efficient when tested in conjunction with a 28 inch diameter spinner than with a 23 inch spinner, and that cuffs increased the efficiency as well as the power absorption characteristics. A propeller having good aerodynamic shanks was found to be definitely superior from the efficiency standpoint to a conventional round-shank propeller with or without cuffs; this propeller would probably be considered structurally impracticable, however. The propeller incorporating the NACA 16 series sections at the tims were found to have a slightly higher efficiency than a conventional propeller; the take-off characteristics appeared to be equally good. The effects noted above probably would be accentuated at helical speeds at which compressibility effects would enter.
Full-Scale Wind-Tunnel Investigation of Wing-Cooling Ducts Effects of Propeller Slipstream, Special Report
The safety of remotely operated vehicles depends on the correctness of the distributed protocol that facilitates the communication between the vehicle and the operator. A failure in this communication can result in catastrophic loss of the vehicle. To complicate matters, the communication system may be required to satisfy several, possibly conflicting, requirements. The design of protocols is typically an informal process based on successive iterations of a prototype implementation. Yet distributed protocols are notoriously difficult to get correct using such informal techniques. We present a formal specification of the design of a distributed protocol intended for use in a remotely operated vehicle, which is built from the composition of several simpler protocols. We demonstrate proof strategies that allow us to prove properties of each component protocol individually while ensuring that the property is preserved in the composition forming the entire system. Given that designs are likely to evolve as additional requirements emerge, we show how we have automated most of the repetitive proof steps to enable verification of rapidly changing designs.
Full-Scale Wind-Tunnel Investigation of Wing Cooling Ducts, Special Report
The systematic investigation of wing cooling ducts at the NACA laboratory has been continued with tests in the full-scale wind tunnel on ducts of finite span. These results extend the previous investigation on section characteristics of ducts to higher Reynolds numbers and indicate the losses due to the duct ends. The data include comparisons between ducts completely within the ring and the conventional underslung ducts. Methods of flow regulation were studied and data were obtained for a wide range of internal duct resistance. The results show satisfactory correlation between the finite span and the previously measured section characteristics obtained with full-span ducts. The effects of the various design parameters on the duct characteristics are discussed. The cooling power required for the internal duct installation is shown to be only a small percentage of the engine power.
High-Speed Tests of a Model Twin-Engine Low-Wing Transport Airplane
Force tests were made of a 1/8-scale model of a twin-engine low-wing transport airplane in the NACA 8-foot high-speed wind tunnel to investigate compressibility and interference effects at speeds up to 450 miles per hour. In addition to tests of the standard arrangement of the model tests were made with several modifications designed to reduce the drag and to increase the critical speed. The results show serious increases in drag at critical speeds below 450 miles per hour due to the occurrence of compressibility burbles on the standard radial-engine cowlings, on sections of the wing as a result of wing-nacelle interference, and on the semi-retracted main landing wheels. The critical speed at which the shock occurred on the standard cowlings was 20 miles per hour lower in the presence of the fuselage than in the presence of the wing only. The drag of the complete model was reduced 25% at 300 miles per hour by completely retracting the landing gear, fairing the windshield irregularities, and substituting streamline nacelles (with allowance made for the proper amount of cooling-air flow) for the standard nacelle arrangement. The values of the critical Mach number were extended from 0.47 to 0.60 as a result of the aforementioned improvements. The principal purpose of the reported tests was to investigate the effect of compressibility on the drag of the component parts of a representative large airplane and on the overall drag of such an airplane. The influence of interference on compressibility effects was also studied. In addition, it was proposed to test several modifications of the standard component parts that gave promise of an improvement in aerodynamic characteristics.
High-Speed Tests of Radial-Engine Cowlings
The drag characteristics of eight radial-engine cowlings have been determined over a wide speed range in the N.A.C.A. 8-foot high-speed wind tunnel. The pressure distribution over all cowlings was measured, to and above the speed of the compressibility burble, as an aid in interpreting the force tests. One-fifth-scale models of radial-engine cowlings on a wing-nacelle combination mere used in the tests.
Ice Prevention on Aircraft by Means of Impregnated Leather Covers, Special Report
The National Advisory Committee for Aeronautics is testing the effectiveness of a method to prevent the formation of ice on airplanes. The system makes use of a leather cover that is attached to the leading edge of the wing. A small tube, attached to the inner surface of the leather, distributes to the leading edge a solution that permeates throughout the leather and inhibits the formation of ice on the surface. About 25 pounds of the liquid per hour would be sufficient to prevent ice from forming on a wing of 50-foot span. The additional gross weight of the system will not be excessive. The tests are not yet completed but the method is thought to be practicable for the wing and it may also be adaptable to the propeller.
Intercooler Design for Aircraft, Special Report
When an airplane is operating at high altitude, it is necessary to use a supercharger to maintain ground pressure at the carburetor inlet. This maintenance and high intake-manifold pressure tends to keep the power output of the engine at ground-level value. The air, being compressed by the supercharger, however, is heated by adiabatic compression and friction to a temperature that seriously affect the performance of the engine. It is thus necessary to use an intercooler to reduce the temperature of the air between the supercharger outlet and the carburetor inlet. The amount of cooling required of the intercooler depend on the efficiency of the supercharger installation. In this investigation, several types of intercoolers were compared and a design procedure that will give the best intercooler for a given set of conditions is indicated. The figure of merit used for the selection of the best design was the total power consumed by the intercooler. This value includes the power required to transport the weight of the intercooler as well as the power used to force the charge air and the cooling air through the intercooler. The cost, size and practicality of construction were not considered, inasmuch as it was thought that a survey of possibilities of improvement in design would be of interest, regardless of whether the improvement could be immediately realized. Three types of intercoolers are included in this survey: a counterflow intercooler with indirect cooling surface in the form of fins, a counterflow intercooler with direct cooling surfaces, and a cross-flow, tube-type intercooler.
Interference of Tail Surfaces and Wing and Fuselage from Tests of 17 Combinations in the N.A.C.A. Variable-Density Tunnel
An investigation of the interference associated with tail surfaces added to wing-fuselage combinations was included in the interference program in progress in the NACA variable-density tunnel. The results indicate that, in aerodynamically clean combinations, the increment to the high-speed drag can be estimated from section characteristics within useful limits of accuracy. The interference appears mainly as effects on the downwash angel and as losses in the tail. An interference burble, which markedly increases the glide-path angle and the stability in pitch before the actual stall, may be considered a means of obtaining satisfactory stalling characteristics for a complete combination.
Investigation in the 7-By-10 Foot Wind Tunnel of Ducts for Cooling Radiators Within an Airplane Wing, Special Report
An investigation was made in the NACA 7- by 10-foot wind tunnel of a large-chord wing model with a duct to house a simulated radiator suitable for a liquid-cooled engine. The duct was expanded to reduce the radiator losses, and the installation of the duct and radiator was made entirely within the wing to reduce form and interference drag. The tests were made using a two-dimensional flow set-up with a full-span duct and radiator. Section aerodynamic characteristics of the basic airfoil are given and also curves showing the characteristics of the various duct-radiator combinations. An expression for efficiency, the primary criterion of merit of any duct, and the effect of the several design parameters of the duct-radiator arrangement are discussed. The problem of throttling is considered and a discussion of the power required for cooling is included. It was found that radiators could be mounted in the wing and efficiently pass enough air for cooling with duct outlets located at any point from 0.25c to 0.70c from the wing leading edge on the upper surface. The duct-inlet position was found to be critical and, for maximum efficiency, had to be at the stagnation point of the airfoil and to change with flight attitude. The flow could be efficiently throttled only by a simultaneous variation of duct inlet and outlet sizes and of inlet position. It was desirable to round both inlet and outlet lips. With certain arrangements of duct, the power required for cooling at high speed was a very low percentage of the engine power.
Investigation of an Electrically Heated Airplane Windshield for Ice Prevention, Special Report
A study was made at the National Advisory Committee for Aeronautics Laboratory of the operation of an electrically heated glass panel, which simulated a segment of an airplane windshield, to determine if ice formations, which usually result in the loss of visibility, could be prevented. Tests were made in the 7- by 3-foot ice tunnel, and in flight, under artificially created ice-forming conditions. Ice was prevented from forming on the windshield model in the tunnel by 1.25 watts of power per square inch with the air temperature at 23 F and a velocity of 80 miles per hour. Using an improved model in flight, ice was prevented by 1.43 watts of power per square inch of protected area and 2 watts per inch concentrated in the rim, with the air temperature at 26 F and a velocity of 120 miles per hour. The removal of a preformed ice cap was effected to a limited extent in the tunnel by the use of 1.89 watts of power per square inch when the temperature and velocity were 25 F and 80 miles per hour, respectively. The results indicate that service tests with an improved design are justified.
An Investigation of the Drag of Windshields in the 8-Foot High-Speed Wind Tunnel
The drag of closed-cockpit and transport-type windshields was determined from tests made at speeds from 200 to 440 miles per hour in the NACA 8-foot high-speed wind tunnel. This speed range corresponds to a test Reynolds number range of 2,510,000 to 4,830,000 based on the mean aerodynamic chord of the full-span model (17.29 inches). The shapes of the windshield proper, the hood, and the tail fairing were systematically varied to include common types and a refined design. Transport types varied from a reproduction of a current type to a completely faired windshield. The results show that the drag of windshields of the same frontal area, on airplanes of small to medium size, may account for 15% of the airplane drag or may be reduced to 1%. Optimum values are given for windshield and tail-fairing lengths; the effect, at various radii is shown. The longitudinal profile of a windshield is shown to be most important and the transverse profile, to be much less important. The effects of retaining strips, of steps for telescoping hoods, and of recessed windows are determined. The results show that the drag of transport-type windshields may account for 21% of the fuselage drag or may be reduced to 2%.
An Investigation of the Prevention of Ice on the Airplane Windshield
An investigation has been completed on several methods for the prevention and removal of ice on an airplane windshield. Tests were made on the use of electric heating, hot-air heating, and an alcohol-dispensing, rotating wiper blade. The results showed that vision through the airplane windshield could be maintained during severe icing conditions by the use of heat. When put in operation prior to the formation of ice on the windshield, the rotating wiper blade prevented the formation of ice. A combination system that employs the use of heated air and a rotating wiper blade would appear to give protection against the formation of ice on the windshield exterior, prevent frost on the interior, and provide for the removal of rainfall.
Large-Scale Boundary-Layer Control Tests on Two Wings in the NACA 20-Foot Wind Tunnel, Special Report
Tests were made in the N.A.C.A. 20-foot wind tunnel on: (1) a wing, of 6.5-foot span, 5.5-foot chord, and 30 percent maximum thickness, fitted with large end plates and (2) a 16-foot span 2.67-foot chord wing of 15 percent maximum thickness to determine the increase in lift obtainable by removing the boundary layer and the power required for the blower. The results of the tests on the stub wing appeared more favorable than previous small-scale tests and indicated that: (1) the suction method was considerably superior to the pressure method, (2) single slots were more effective than multiple slots (where the same pressure was applied to all slots), the slot efficiency increased rapidly for increasing slot widths up to 2 percent of the wing chord and remained practically constant for all larger widths tested, (3) suction pressure and power requirements were quite low (a computation for a light airplane showed that a lift coefficient of 3.0 could be obtained with a suction as low as 2.3 times the dynamic pressure and a power expenditure less than 3 percent of the rated engine power), and (4) the volume of air required to be drawn off was quite high (approximately 0.5 cubic feet per second per unit wing area for an airplane landing at 40 miles per hour with a lift coefficient of 3,0), indicating that considerable duct area must be provided in order to prevent flow losses inside the wing and insure uniform distribution of suction along the span. The results from the tests of the large-span wing were less favorable than those on the stub wing. The reasons for this were, probably: (1) the uneven distribution of suction along the span, (2) the flow losses inside the wing, (3) the small radius of curvature of the leading edge of the wing section, and (4) the low Reynolds Number of these tests, which was about one half that of the stub wing. The results showed a large increase in the maximum lift coefficient with an increase in Reynolds Number in the range of the tests. The results of drag tests showed that the profile drag of the wing was reduced and the L/D ratio was increased throughout the range of lift coefficients corresponding to take-off and climb but that the minimum drag was increased. The slot arrangement that is best for low drag is not the same, however, as that for maximum lift.
Mechanical Properties of Flush-Riveted Joints
The strength of representative types of flush-riveted joints has been determined by testing 865 single-shearing, double-shearing, and tensile specimens representing 7 types of rivet and 18 types of joint. The results, presented in graphic form, show the stress at failure, type of failure, and d/t ratio. In general, 'dimpled' joints were appreciably stronger than countersunk or protruding-head joints, but their strength was greatly influenced by constructional details. The optimum d/t ratios have been determined for the several kinds of joints. Photomacrographs of each type show constructional details and, in several instances, cracks in the sheet.
Method of Determining the Weights of the Most Important Simple Girders
This paper presents a series of tables for the simple and more common types of girders, similar to the tables given in handbooks under the heading "Strength of Materials," for determining the moments, deflections, etc., of simple beams. Instead of the uniform cross section there assumed, the formulas given here apply only to girders of "uniform strength," i.e., it is assumed that a girder is so dimensioned that a given load subjects it to a uniform stress throughout its whole length. This principle is particularly applicable to very strong structures. Girders of uniform strength are the lightest girders conceivable, because any girder, all of whose members are stressed to the limit, can not be surpassed by a lighter girder, if the two girders have the same form. The weight G of a member of length l, cross section F and specific gravity gamma is: G = Flgamma.
Model tests of a wing-duct system for auxiliary air supply
No Description
NACA Radio Ground-Speed System for Aircraft, Special Report
A method that utilizes the Doppler effect on radio signals for determining the speed of an airplane and the distance traveled by the airplane has been developed and found to operate satisfactorily. In this method, called the NACA radio ground-speed system, standard readily available radio equipment is used almost exclusively and extreme frequency stability of the transmitters is not necessary. No complicated equipment need be carried in the airplane, as the standard radio transmitter is usually adequate. Actual flight tests were made in which the method was used and the results were consistent with calibrated air speed indications and stop-watch measurements. Inasmuch as the fundamental accuracy of the radio method is far better than either of the checking systems used, no check was made on the limitations of the accuracy.
Notes on Factors Affecting Geometrical Arrangement of Tricycle-Type Landing Gear
The effects of the geometrical arrangement of tricycle landing gears on various characteristics of an airplane equipped with such landing gear is discussed. The characteristics discussed include directional stability, overturning tendencies, steering and ground handling, shimmy, takeoff, and porpoising. The conclusions are summarized in a table.
Notes on New French Commercial Airplanes
This document discusses the types of commercial planes ordered by Air France. Characteristics of the Wibault 670, the Dewoitine D.620, Bloch 300, and the Potez 620 airplanes are included. Pictures and diagrams of these aircraft are also included.
Paris Aviation Salon, 1934
This document reviews the Air show held in Paris in 1934. It includes charts and pictures of the aircraft which were from all parts of Europe.
Performance Characteristics of an Aircraft Engine with Exhaust Turbine Supercharger, Special Report
The Pratt and Whitney Aircraft company and the Naval Aircraft Factory of the United States Navy cooperated in a laboratory and flight program of tests on an exhaust turbine supercharger. Two series of dynamometer tests of the engine super-charger combination were completed under simulated altitude conditions. One series of hot gas-chamber tests was conducted by the manufacturer of the supercharger. Flight demonstrations of the supercharger installed in a twin-engine flying boat were terminated by failure of the turbine wheels. The analysis of the results indicated that a two-stage supercharger with the first-stage exhaust turbine driven will deliver rated power for a given indicated power to a higher altitude, will operate more efficiently, and will require simpler controls than a similar engine with the first stage of the supercharger driven from the crankshaft through multispeed gears.
Preliminary Full-Scale Wind-Tunnel Investigation of Wing Ducts for Radiators, Special Report
Wing ducts for liquid-cooled engine radiators have been investigated in the N.A.C.A. full-scale wind tunnel on a large model airplane. The tests were made to determine the relative merits of several types of duct and radiator installations for an airplane of a particular design. In the test program the principal duct dimensions were systematically varied, and the results are therefore somewhat applicable to the general problems of wing duct design, although they should be considered as preliminary and only indicative of the inherent possibilities.
Preliminary Investigation of Certain Laminar-Flow Airfoils for Application at High Speeds and Reynolds Numbers
In order to extend the useful range of Reynolds numbers of airfoils designed to take advantage of the extensive laminar boundary layers possible in an air stream of low turbulence, tests were made of the NACA 2412-34 and 1412-34 sections in the NACA low-turbulence tunnel. Although the possible extent of the laminar boundary layer on these airfoils is not so great as for specially designed laminar-flow airfoils, it is greater than that for conventional airfoils, and is sufficiently extensive so that at Reynolds numbers above 11,000,000 the laminar region is expected to be limited by the permissible 'Reynolds number run' and not by laminar separation as is the case with conventional airfoils. Drag measurements by the wake-survey method and pressure-distribution measurements were made at several lift coefficients through a range of Reynolds numbers up to 11,400,000. The drag scale-effect curve for the NACA 1412-34 is extrapolated to a Reynolds number of 30,000,000 on the basis of theoretical calculations of the skin friction. Comparable skin-friction calculations were made for the NACA 23012. The results indicate that, for certain applications at moderate values of the Reynolds number, the NACA 1412-34 and 2412-34 airfoils offer some advantages over such conventional airfoils as the NACA 23012. The possibility of maintaining a more extensive laminar boundary layer on these airfoils should result in a small drag reduction, and the absence of pressure peaks allows higher speeds to be reached before the compressibility burble is encountered. At lower Reynold numbers, below about 10,000,000, these airfoils have higher drags than airfoils designed to operate with very extensive laminar boundary layers.
Preliminary Investigation of the Effect of Compressibility on the Maximum Lift Coefficient, Special Report
Preliminary data are presented on the variation of the maximum lift coefficient with Mach number. The data were obtained from tests in the 8-foot high-speed tunnel of three NACA 16-series airfoils of 1-foot chord. Measurements consisted primarily of pressure-distribution measurements in order to illustrate the nature of the phenomena. It was found that the maximum lift coefficient of airfoils is markedly affected by compressibility even at Mach numbers as low as 0.2. At high Mach numbers pronounced decrease of the maximum lift coefficient was found. The magnitude of the effects of compressibility on the maximum lift coefficient and the low speeds at which these effects first appear indicate clearly that consideration of the take-off thrust for propellers will give results seriously in error if these considerations are based on the usual low-speed maximum-lift-coefficient data generally used.
Preliminary Model Tests of a Wing-Duct Cooling System for Radial Engines, Special Report
Wind-tunnel tests were conducted on a model wing-nacelle combination to determine the practicability of cooling radial engines by forcing the cooling air into wing-duct entrances located in the propeller slipstream, passing the air through the engine baffles from rear to front, and ejecting the air through an annular slot near the front of the nacelle. The tests, which were of a preliminary nature, were made on a 5-foot-chord wing and a 20-inch-diameter nacelle. A 3-blade, 4-foot-diameter propeller was used. The tests indicated that this method of cooling and cowling radial engines is entirely practicable providing the wing of the prospective airplane is sufficiently thick to accommodate efficient entrance ducts , The drag of the cowlings tested was definitely less than for the conventional N.A.C.A. cowling, and the pressure available at low air speed corresponding to operation on the ground and at low flying speeds was apparently sufficient for cooling most present-day radial engines.
Preliminary Tests in the NACA Tank to Investigate the Fundamental Characteristics of Hydrofoils
This preliminary investigation was made to study the hydrodynamic properties and general behavior of simple hydrofoils. Six 5- by 30-inch plain, rectangular hydrofoils were tested in the NACA tank at various speeds, angles of attack and depths below the water surface. Two of the hydrofoils had sections representing the sections of commonly used airfoils, one had a section similar to one developed Guidoni for use with hydrofoil-equipped seaplane floats, and three had sections designed to have constant chordwise pressure distributions at given values of the lift coefficient for the purpose of delaying the speed at which cavitation begins. The experimental results are presented as curves of the lift and drag coefficients plotted against speed for the various angles of attack and depths for which the hydrofoils were tested. A number of derived curves are included for the purpose of better comparing the characteristics of the hydrofoils and to show the effects of depth. Several representative photographs show the development of cavitation on the the upper surface of the hydrofoils. The results indicate that properly designed hydrofoil sections will have excellent characteristics and that the speed at which cavitation occurs may be delayed to an appreciable extent by the use of suitable sections.
Preliminary Tests of Blowers of Three Designs Operating in Conjunction with a Wing-Duct Cooling System for Radial Engines, Special Report
This paper is one of several dealing with methods intended to reduce the drag of present-day radial engine installations and improve the cooling at zero and low air speeds, The present paper describes model wind-tunnel tests of blowers of three designs tested in conjunction with a wing-nacelle combination. The principle of operation involved consists of drawing cooling air into ducts located in the wing root at the point of maximum slipstream velocity, passing the air through the engine baffles from rear to front, and exhausting the air through an annular slot located between the propeller and the engine with the aid of a blower mounted on the spinner. The test apparatus consisted essentially of a stub wing having a 5-foot chord and a 15-foot span, an engine nacelle of 20 inches diameter enclosing a 25-horsepower electric motor, and three blowers mounted on propeller spinners. Two of the blowers utilize centrifugal force while the other uses the lift from airfoils to force the air out radially through the exit slot. Maximum efficiencies of over 70 percent were obtained for the system as a whole. Pressures were measured over the entire flight range which were in excess of those necessary to cool present-day engines, The results indicated that blowers mounted on propeller spinners could be built sufficiently powerful and efficient to warrant their use as the only, or chief, means of forcing air through the cooling system, so that cooling would be independent of the speed of the airplane.
Preliminary Tests of Nose- and Side- Entrance Blower Cooling Systems for Radial Engines, Special Report
Two cowling systems intended to reduce the drag and improve the low-speed cooling characteristics of conventional radial engine cowlings were tested in model form to determine the practicability of the methods. One cowling included a blower mounted on the rear face of a large propeller spinner which drew cooling air in through side entrance ducts located behind the equivalent engine orifice plate. The air was passed through the equivalent engine orifice plate from rear to front and out through a slot between the spinner and the engine plate. The blower produced substantially all the power necessary to circulate the cooling air in some cases, so the quantity of air flowing was independent of the air speed, Two types of blowers were used, a centrifugal type and one using airfoil blades which forced the air outward from the center of rotation. The other cowling was similar to the conventional N.A.C.A. cowling except for the addition of a large propeller spinner nose. The spinner was provided with a hole in the nose to admit cooling air and blower blades to increase the pressure for cooling at low speeds. The tests show that with both cowling types the basic drag of the nacelle was reduced substantially below that for the N.A.C.A. cowling by virtue of the better nose shape made possible by the spinner . The drag due to the side-entrance ducts was nearly zero when the openings were closed or when the blower was drawing in a certain quantity of air in proportion to the air speed. The drag increased, however, when air mas allowed to spill from the openings. The nose-entrance blower showed considerable promise as a cooling means although the blower tested was relatively inefficient, owing to the fact that the blower compartments evidently were expanded too rapidly under the conditions imposed. by the design.
Preliminary Wind-Tunnel and Flight Tests of a Balanced Split Flap, Special Report
One disadvantage that has been apparent in the operation of split flaps as used to date is the time and effort required to operate them. In this communication an investigation is being made of possible means for balancing them aerodynamically to make their operation easier. Several arrangements have been tested in the 7 by 210 foot wind tunnel, and the results of the wind-tunnel tests as well as preliminary flight tests on one of the more promising forms are given in this paper.
Preliminary Wind-Tunnel Tests of the Effect of Nacelles on the Characteristics of a Twin-Engine Bomber Model with Low-Drag Wing, Special Report
Tests were made in the NACA 19-foot pressure tunnel of a simplified twin-engine bomber model with an NACA low-drag wing primarily to obtain an indication of the effects of engine nacelles on the characteristics of the model both with and without simple split trailing-edge flaps. Nacelles with conventional-type cowlings representative of those used on an existing high-performance airplane and with NACA high-speed type E cowlings were tested. The tests were made without propeller slipstream. The aerodynamic effects of adding the nacelles to the low-drag wing were similar to the effects commonly obtained by adding similar nacelles to conventional wings. The maximum lift coefficient without flaps was slightly increased, but the increment in maximum lift due to deflecting the flaps was somewhat decreased. The stalling characteristics were improved by the presence of the nacelles. Addition of the nacelles had a destabilizing effect on the pitching moments, as is usual for nacelles that project forward of the wing. The drag increments due to the nacelles were of the usual order of magnitude, with the increment due to the nacelles with NACA type E cowlings approximately one-third less than that of the nacelles with conventional cowlings with built-in air scoops.
Present Status of Lateral-Control Devices for use with Split Flaps, Special Report
The increased use of split flaps for the dual purpose of reducing the landing speed and shortening the landing glide of airplanes has established as acute the problem of obtaining satisfactory lateral control to be used in conjunction with the flaps with out the sacrifice of any of the effectiveness of the flaps. A large amount of work is being done on this problem by various organizations and individuals. Several of the devices developed seem usable, some of them unquestionably so. The present paper attempts to summarize the most promising results obtained to date. Topics covered include ordinary ailerons, external ailerons, floating ailerons, upper-surface ailerons, and spoilers. Although the external ailerons above the trailing edge of the wing and the spoilers at the rear of the wing appear quite promising, it would seem that probably the most satisfactory immediate solution of the problem, including the obtaining of light and smoothly graduated control forces, would in most cases be obtained by the use of the arrangement in which the flap is retracted ahead of ordinary narrow-chord ailerons and is deflected to the rear as well as downward when in use.
Pressure Distribution on the Fuselage of a Midwing Airplane Model at High Speeds
The pressure distribution on the fuselage of a midwing airplane model was measured in the NACA 8-foot high speed wind tunnel at speeds from 140 to 440 miles per hour for lift coefficients ranging from -0.2 to 1.0. The primary purpose of the tests was to provide data showing the air pressures on various parts of the fuselage for use in structural design. The data may also be used for the design of scoops and vents. The results show that the highest negative pressures occurred near the wing and were more dependent on the wing than on the fuselage. At high speeds, the magnitude of the pressure coefficients as predicted from pressure coefficients determined experimentally at low speeds by application of the theoretical factor 1/(square root)1-M(exp 2) (where M is the ratio of the air speed to the speed of sound in air) may misrepresent the actual conditions. At the points where the maximum negative pressures ocurred, however, the variation of the pressure coefficients was in good agreement with the theoretical factor, indicating that this factor may afford satisfactory predictions of critical speed, at least for fuselages similar to the shape tested.
A profile-drag investigation in flight on an experimental fighter-type airplane the North American XP-51
No Description
Profile-Drag Investigation of an Airplane Wing Equipped with Rubber Inflatable De-Icer
The National Advisory Committee for Aeronautics has made profile-drag measurements in flight of a wing which was equipped with a rubber inflatable de-icer and to which various stimulated ice formations were attached. Tuft observations at the stalling speed of the wing with the various drag conditions were made in order to determine the influence on the maximum lift coefficient. The de-icer installation caused an increase of from 10-20% in the profile drag of the plain wing and reduced CL(sub max) about 6%. Simulated ice, when confined to the leading-edge region of the de-icer, had no measurable influence upon the profile drag at the cruising speed. This ice condition, however, reduced the value of CL(sub max) to about three-fourths that of the plain wing. Simulated ice in the form of a ridge along the upper and lower de-icer cap-strips increased the profile drag by about 360% at cruising speed. This condition reduced the CL(sub max) to approximately one-half that of the plain wing value.
Propeller-Design Problems of High-Speed Airplanes, Special Report
It is shown that on the basis of existing high-speed airfoil data, propeller efficiencies appreciably in excess of 40% do not appear possible at speeds above 500 miles per hour at 20,000 feet. The assumption that present propeller-blade thicknesses cannot be reduced radically, is implied. Until the reliability and applicability of the airfoil data are established, this conclusion must not be regarded as infallible. Dive tests with airplanes equipped with thrust meters and torque meters are proposed to provide an urgently needed check. The design of high-speed propellers is dictated wholly by compressibility considerations. The blade width, thickness, and pitch distribution; also the airfoil sections, the lift coefficient, the propeller diameter, and rpm must all be adjusted if reasonable efficiencies are to be maintained at airplane speeds that are now being approached. Research is urgently needed on: 1) airfoils at subsonic, sonic, and supersonic speeds; 2) propellers at high forward speeds in wind tunnels; 3)propellers in free flight at high speeds; and 4) jet propulsion and related devices. The breakdown of propeller efficiency indicated by airfoil data, should serve as an incentive for accelerated research on jet propulsion. This device may extend the attainable speed of current airplanes to the neighborhood of 550 miles per hour at 20,000 feet.
Radiator Design and Installation
The fundamental principles of fluid flow, pressure losses, and heat transfer have been presented and analyzed for the case of a smooth tube with fully developed turbulent flow. These equations apply to tubes with large length-diameter ratios where the f1ow is at a high Reynolds Number. The error introduced by using these equations increases as the magnitude of the tube length and the air-flow Reynolds Number approaches the values encountered in modern radiator designs. Accordingly, heat-transfer tests on radiator sections were made and the results are presented in nondimensional form to facilitate their use and for comparison with other heat-transfer data. In addition, pressure losses were measured along smooth tubes of circular, square, and rectangular cross section and the results were also correlated and are presented in nondimensional form. The problem of a radiator design for a particular installation is solved, the experimental heat-transfer and pressure-loss data being used, on a basis of power chargeable to the radiator for form drag, for propelling the weight, and for forcing the air through the radiator. The case of an installation within a wing or an engine nacelle is considered. An illustration of radiator design is carried through for an arbitrary set of conditions. Sufficient detail is given to enable the reader to reproduce the analysis for any given case.
Radiator Design and Installation - II, Special Report
A mathematical analysis of radiator design has been made. The volume of the radiator using least total power has been expressed in a single formula which shows that the optimum radiator volume is independent of the shape of the radiator and which makes possible the construction of design tables that give the optimum radiator volume per 100-horsepower heat dissipation as a function of the speed, of the altitude, and of one parameter involving characteristics of the airplane. Although, for a given set of conditions, the radiator volume using the least total power is fixed, the frontal area, or the length of the radiator needs to be separately specified in order to satisfy certain other requirement such as the ability to cool with the pressure drop available while the airplane is climbing. In order to simplify the specification for the shape of the radiator and in order to reduce the labor involved in calculating the detailed performance of radiators, generalized design curves have been developed for determining the pressure drop, the mass flow of air, and the power expended in overcoming the cooling drag of a radiator from the physical dimensions of the radiator. In addition, a table is derived from these curves, which directly gives the square root of the pressure drop required for ground cooling as a function of the radiator dimensions, of the heat dissipation and of the available temperature difference. Typical calculations using the tables of optimum radiator volume and the design curves are given. The jet power that can be derived from the heated air is proportional to the heat dissipation and is approximately proportional to the square of the airplane speed and to the reciprocal of the absolute temperature of the atmosphere. A table of jet power, per 100 horsepower of heat dissipation at various airplane speeds and altitudes is presented.
Relative Efficiencies and Design Charts for Various Engine-Propeller Combinations, Special Report
The relative efficiencies of various engine-propeller combinations were the subject of a study that covered the important flight conditions, particularly the take-off. Design charts that graphically correlate the various propeller parameters were prepared to facilitate the solution of problems and also to c1arify the conception of the relationships of the various engine-propeller design factors. It is shown that, among the many methods for improving the take-off thrust, the use of high-pitch, large-diameter controllable propellers turning at low rotational speeds is probably the most generally promising. With such a combination the take-off thrust may be further increased, at the expense of a small loss in cruising efficiency, by compromise designs wherein the pitch setting is slightly reduced and the diameter is further increased. The degree of compromise necessary to accomplish the maximum possible take-off improvement depends on such design factors as overspeeding and overboosting at take-off as well as depending on the design altitude. Both overspeeding and designing for altitude operation have the same effect on the take-off thrust as compromising in that the propulsive efficiency is increased thereby; boosting the engine, however, has the reverse effect on the propulsive efficiency, although the brake horsepower is increased.
The Relative Hydrodynamic Resistance of Various Types of Rivet Heads from Tests of Planning Surfaces, Special Report
The Committee was requested to investigate the effect of various types of rivet heads on hydrodynamic resistance. The proposal was made to obtain the resistance of the various types of rivets by tests of planing surfaces on which the full size rivets would be arranged. The testing methods, results and conclusions are given.
A Remote Indicating Hinge-Moment Balance, Special Report
This report describes an electrical hinge-moment balance for use with wind-tunnel models of aircraft. A brief description of the principle of operation and operating experience with the balance is given in part I. Part II gives constructional details and part III gives theoretical considerations. Extensive constructional information is given to enable the reproduction of the equipment.